J = 1

A REVIEW GOES HERE - Check our WWW List of Reviews

NODE=S044203

Z MASS

NODE=S044205 NODE=S044205

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). The fit is performed using the Z mass and width, the Z hadronic pole cross section, the ratios of hadronic to leptonic partial widths, and the Z pole forward-backward lepton asymmetries. This set is believed to be most free of correlations.

The Z-boson mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass dependent width. The value is 34 MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator. Also the LEP experiments have generally assumed a fixed value of the $\gamma-Z$ interferences term based on the standard model. Keeping this term as free parameter leads to a somewhat larger error on the fitted Z mass. See ACCIARRI 00Q and ABBIENDI 04G for a detailed investigation of both these issues.

	TECN	COMMENT	NODE=S044M					
91.1876±0.0021 OUR FIT								
ABBIENDI 01A	OPAL	Eee = 88–94 GeV						
ABREU 00F	DLPH	E ^{ee} _{cm} = 88–94 GeV						
ACCIARRI 000	L3	E ^{ee} _{cm} = 88–94 GeV						
BARATE 000	ALEP	E ^{ee} _{cm} = 88–94 GeV						
for averages, fits, li	imits, etc.	• • •						
ABBIENDI 04G	G OPAL	•						
ACHARD 040	L3							
ACCIARRI 000	Q L3	CITI						
MIYABAYASHI 95	TOPZ							
ALITTI 92B	B UA2	$E_{ m cm}^{p\overline{p}}=$ 630 GeV						
ABE 890	CDF	$E_{cm}^{p\overline{p}} = 1.8 \; TeV$						
ABRAMS 89B	MRK2	<i>E</i> ^{ee} cm = 89−93 GeV						
ALBAJAR 89	UA1	$E_{\rm cm}^{p\overline{p}}=$ 546,630 GeV						
	ABREU 006 ACCIARRI 000 BARATE 000 for averages, fits, I ABBIENDI 040 ACCIARRI 000 MIYABAYASHI 95 ALITTI 928 ABE 890 ABRAMS 898	ABREU 00F DLPH ACCIARRI 00C L3 BARATE 00C ALEP for averages, fits, limits, etc. ABBIENDI 04G OPAL ACHARD 04C L3 ACCIARRI 00Q L3 MIYABAYASHI 95 TOPZ ALITTI 92B UA2 ABE 89C CDF ABRAMS 89B MRK2	ABREU 00F DLPH $E_{\rm cm}^{\rm ee} = 88-94~{\rm GeV}$ ACCIARRI 00C L3 $E_{\rm cm}^{\rm ee} = 88-94~{\rm GeV}$ BARATE 00C ALEP $E_{\rm cm}^{\rm ee} = 88-94~{\rm GeV}$ for averages, fits, limits, etc. • • • ABBIENDI 04G OPAL $E_{\rm cm}^{\rm ee} = {\rm LEP1} + 130-209~{\rm GeV}$ ACHARD 04C L3 $E_{\rm cm}^{\rm ee} = {\rm 183}-209~{\rm GeV}$ ACCIARRI 00Q L3 $E_{\rm cm}^{\rm ee} = {\rm LEP1} + 130-189~{\rm GeV}$ MIYABAYASHI 95 TOPZ $E_{\rm cm}^{\rm ee} = 57.8~{\rm GeV}$ ALITTI 92B UA2 $E_{\rm cm}^{\rm pp} = 630~{\rm GeV}$ ABE 89C CDF $E_{\rm cm}^{\rm pp} = 1.8~{\rm TeV}$ ABRAMS 89B MRK2 $E_{\rm cm}^{\rm ee} = 89-93~{\rm GeV}$					

¹ ABBIENDI 01A error includes approximately 2.3 MeV due to statistics and 1.8 MeV due to LEP energy uncertainty.

NODE=S044M;LINKAGE=AH

 ${\sf NODE}{=}{\sf S044M;} {\sf LINKAGE}{=}{\sf NN}$

NODE=S044M;LINKAGE=M

NODE=S044M;LINKAGE=AG

NODE=S044M;LINKAGE=E

 $^{^2\,\}mbox{The error includes}$ 1.6 MeV due to LEP energy uncertainty.

³The error includes 1.8 MeV due to LEP energy uncertainty.

 $^{^4}$ BARATE 00C error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty.

 $^{^5}$ ABBIENDI 04G obtain this result using the S–matrix formalism for a combined fit to their cross section and asymmetry data at the $\it Z$ peak and their data at 130–209 GeV. The authors have corrected the measurement for the 34 MeV shift with respect to the Breit–Wigner fits.

 $^{^6}$ ACHARD 04C select $e^+\,e^-\to Z\gamma$ events with hard initial–state radiation. Z decays to $q\overline{q}$ and muon pairs are considered. The fit results obtained in the two samples are found consistent to each other and combined considering the uncertainty due to ISR modelling as fully correlated.

 $^{^7}$ ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of ± 2.3 MeV due to the uncertainty on the γZ interference.

⁸ MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 93D data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametrization.

⁹ Enters fit through W/Z mass ratio given in the W Particle Listings. The ALITTI 92B systematic error (± 0.93) has two contributions: one (± 0.92) cancels in m_W/m_Z and one (± 0.12) is noncancelling. These were added in quadrature.

 $^{^{10}}$ First error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.

NODE=S044M;LINKAGE=DB

NODE=S044M;LINKAGE=AC NODE=S044M;LINKAGE=AB NODE=S044M;LINKAGE=KA

NODE=S044M;LINKAGE=AI

11 ABRAMS 89B uncertainty includes 35 MeV due to the absolute energy measurement.

¹²ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

VALUE (GeV)

NODE=S044M;LINKAGE=I NODE=S044M;LINKAGE=F

Z WIDTH

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The $\it Z$ boson" and ref. LEP-SLC 06).

DOCUMENT ID

NODE=S044W NODE=S044W

$N \cap D$	F=S044W	
וווווו	F=5U44VV	

VALUE	(GCV)		LVIJ	DOCUMENT		TLCIV	COMMITTEE	
2.495	2 ± 0.002	3 OUR F	IT.					
2.494	8 ± 0.004	1	4.57M	$^{ m 1}$ abbiendi	01A	OPAL	$E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$	
2.487	6±0.004	1	4.08M	² ABREU	00F	DLPH	$E_{\rm cm}^{\rm ee} = 88-94 {\rm GeV}$	
2.502	4±0.004	2	3.96M	³ ACCIARRI	00C	L3	$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
2.495	1 ± 0.004	3	4.57M	⁴ BARATE	00 C	ALEP	$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
• • •	We do r	not use t	he followir	ng data for average	es, fits,	limits, e	etc. • • •	
2.494	3 ± 0.004	1		⁵ ABBIENDI	04G	OPAL	Eee LEP1 +	
2.502	5±0.004	1	3.97M	⁶ ACCIARRI	00Q	L3	130–209 GeV E ^{ee} _{cm} = LEP1 + 130–189 GeV	
2.50	± 0.21	± 0.06		⁷ ABREU	96R	DLPH	$E_{\rm cm}^{\rm ee}$ = 91.2 GeV	
3.8	± 0.8	± 1.0	188	ABE	89 C	CDF	$E_{cm}^{ar{p}} = 1.8 \; TeV$	
2.42	$^{+0.45}_{-0.35}$		480	⁸ ABRAMS	89 B	MRK2	Eee = 89–93 GeV	
2.7	$^{+1.2}_{-1.0}$	± 1.3	24	⁹ ALBAJAR	89	UA1	$E_{cm}^{p\overline{p}} = 546,630 \; GeV$	OCCUR=2
2.7	± 2.0	± 1.0	25	¹⁰ ANSARI	87	UA2	$E_{ m cm}^{p\overline{p}}=$ 546,630 GeV	

TECN COMMENT

NODE=S044W;LINKAGE=DB

NODE=S044W;LINKAGE=AC NODE=S044W;LINKAGE=AB NODE=S044W;LINKAGE=KA

NODE=S044W;LINKAGE=AI

NODE=S044W;LINKAGE=NN

NODE=S044W;LINKAGE=M

NODE=S044W;LINKAGE=I

NODE=S044W;LINKAGE=F NODE=S044W;LINKAGE=E

Z DECAY MODES

NODE=S044215;NODE=S044
Scale factor/

	Mode	F	raction (Γ_i/Γ		Confidence level	
Γ_1	e^+e^-		(3.363	±0.004	1)%		DESIG=1
Γ_2	$\mu^+\mu^-$		(3.366	± 0.007	7)%		DESIG=2
Γ3	$ au^+ au^-$		(3.370	±0.008	3)%		DESIG=8
Γ_4	$\ell^+\ell^-$	[a]	(3.365	8 ± 0.002	23) %		DESIG=16
Γ_5	$\ell^+\ell^-\ell^+\ell^-$	[<i>b</i>]	(4.2	$^{+0.9}_{-0.8}$) × 1	₁₀ -6	DESIG=82
Γ_6	invisible		(20.00	±0.06) %		DESIG=9
Γ_7	hadrons		(69.91	±0.06) %		DESIG=7
Γ ₈	$(u\overline{u}+c\overline{c})/2$		(11.6	±0.6) %		DESIG=21
Γ_9	$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(15.6	± 0.4) %		DESIG=22
Γ_{10}	<i>c</i> ¯		(12.03	±0.21) %		DESIG=17
Γ_{11}	$b\overline{b}$		(15.12	±0.05) %		DESIG=6

 $^{^1}$ ABBIENDI 01A error includes approximately 3.6 MeV due to statistics, 1 MeV due to event selection systematics, and 1.3 MeV due to LEP energy uncertainty.

 $^{^2}$ The error includes 1.2 MeV due to LEP energy uncertainty.

³The error includes 1.3 MeV due to LEP energy uncertainty.

⁴BARATE 00C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.

 $^{^5}$ ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV. The authors have corrected the measurement for the 1 MeV shift with respect to the Breit–Wigner fits.

 $^{^6}$ ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.

⁷ ABREU 96R obtain this value from a study of the interference between initial and final state radiation in the process $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$.

⁸ ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction error.

 $^{^9}$ ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either $\Gamma(Z)<(1.09\pm0.07)\times\Gamma(W)$, CL=90% or $\Gamma(Z)=(0.82^{+0.19}_{-0.14}\pm0.06)\times\Gamma(W)$. Assuming Standard-Model value $\Gamma(W)=2.65$ GeV then gives $\Gamma(Z)<2.89\pm0.19$ or $\Gamma(Z)=(0.82^{+0.19}_{-0.14}\pm0.06)\times\Gamma(W)$.

```
b\overline{b}b\overline{b}
\Gamma_{12}
                                                                                     ) \times 10^{-4}
                                                                                                                             DESIG=73
                                                               ( 3.6
                                                                           +1.3
                                                              < 1.1
\Gamma_{13}
                                                                                       %
                                                                                                     CL=95%
                                                                                                                             DESIG=64
            ggg
        \pi^0 \gamma
                                                                                       \times\,10^{-5}
\Gamma_{14}
                                                              <
                                                                  5.2
                                                                                                     CL=95%
                                                                                                                             DESIG=10
                                                                                       \times\,10^{-5}
\Gamma_{15}
        \eta \gamma
                                                                  5.1
                                                                                                     CL=95%
                                                                                                                             DESIG=11
                                                                                       \times 10^{-4}
\Gamma_{16}
        \omega \gamma
                                                                  6.5
                                                                                                     CL=95%
                                                                                                                             DESIG=48
        \eta'(958)\gamma
                                                                                       \times\,10^{-5}
\Gamma_{17}
                                                                                                      CL=95%
                                                                  4.2
                                                                                                                             DESIG=12
                                                                                       \times 10^{-5}
                                                                                                      CL=95%
\Gamma_{18}
                                                                  5.2
                                                                                                                             DESIG=13
        \gamma \gamma
\Gamma_{19}
                                                                                       \times 10^{-5}
                                                                                                      CL=95%
                                                              <
                                                                 1.0
                                                                                                                             DESIG=14
\Gamma_{20}
                                                         [c] < 7
                                                                                       \times 10^{-5}
                                                                                                      CL=95%
                                                                                                                             DESIG=18
        \rho^{\pm} W^{\mp}
                                                                                       \times 10^{-5}
\Gamma_{21}
                                                         [c] < 8.3
                                                                                                      CL=95%
                                                                                                                             DESIG=19
                                                                           ^{+0.23}_{-0.25}
                                                                                                                             DESIG=23
\Gamma_{22}
         J/\psi(1S)X
                                                               ( 3.51
                                                                                     ) \times 10^{-3}
                                                                                                         S=1.1
\Gamma_{23}
         \psi(2S)X
                                                                                     ) \times 10^{-3}
                                                               ( 1.60
                                                                          \pm 0.29
                                                                                                                             DESIG=60
\Gamma_{24}
                                                                                     ) \times 10^{-3}
         \chi_{c1}(1P)X
                                                               ( 2.9
                                                                           \pm 0.7
                                                                                                                             DESIG=42
         \chi_{c2}(1P)X
                                                                                       \times 10<sup>-3</sup>
\Gamma_{25}
                                                              < 3.2
                                                                                                     CL=90%
                                                                                                                             DESIG=65
                                                                                     ) \times 10^{-4}
         \Upsilon(1S) \times + \Upsilon(2S) \times
                                                               ( 1.0
                                                                           \pm 0.5
                                                                                                                             DESIG=69
              + \Upsilon(3S) X
             \Upsilon(1S)X
                                                                                       \times 10<sup>-5</sup>
                                                                                                      CL=95%
\Gamma_{27}
                                                              < 4.4
                                                                                                                             DESIG=66
                                                                                       \times\,10^{-4}
             \Upsilon(2S)X
                                                                                                      CL=95%
                                                                                                                             DESIG=67
\Gamma_{28}
                                                              <
                                                                 1.39
                                                                                       \times 10^{-5}
             \Upsilon(3S)X
                                                                                                      CL=95%
\Gamma_{29}
                                                              <
                                                                  9.4
                                                                                                                             DESIG=68
         (D^0/\overline{D}^0) X
\Gamma_{30}
                                                                (20.7)
                                                                           \pm 2.0
                                                                                     ) %
                                                                                                                             DESIG=43
         D^{\pm}X
\Gamma_{31}
                                                               (12.2)
                                                                          \pm 1.7
                                                                                     ) %
                                                                                                                             DESIG=44
\Gamma_{32}
         D^*(2010)^{\pm}X
                                                         [c] (11.4
                                                                          \pm 1.3
                                                                                     ) %
                                                                                                                             DESIG=24
         D_{s1}(2536)^{\pm}X
                                                                                     ) \times 10^{-3}
\Gamma_{33}
                                                                          \pm 0.8
                                                               ( 3.6
                                                                                                                             DESIG=75
         D_{sJ}(2573)^{\pm} X
\Gamma_{34}
                                                               (5.8
                                                                          \pm 2.2
                                                                                     ) \times 10^{-3}
                                                                                                                             DESIG=76
         D^{*'}(2629)^{\pm}X
\Gamma_{35}
                                                             searched for
                                                                                                                             DESIG=74;OUR EVAL;→ UNCHECKED ←
\Gamma_{36}
         BX
                                                                                                                             DFSIG=61
\Gamma_{37}
         B^*X
                                                                                                                             DESIG=62
\Gamma_{38}
         B^{+}X
                                                         [d] (6.08 \pm 0.13)\%
                                                                                                                             DESIG=77
         B_a^0 X
\Gamma_{39}
                                                         [d] ( 1.59 \pm 0.13 ) %
                                                                                                                             DESIG=49
\Gamma_{40}
         B_c^+ X
                                                             searched for
                                                                                                                             DESIG=70;OUR EVAL;→ UNCHECKED ←
\Gamma_{41}
                                                                ( 1.54
                                                                          \pm 0.33 ) %
                                                                                                                             DESIG=78
         ΞōΧ
\Gamma_{42}
                                                                                                                             DESIG=80;OUR EST;→ UNCHECKED ←
                                                                 seen
\Gamma_{43}
         \Xi_b X
                                                                                                                             DESIG=81;OUR EST;→ UNCHECKED ←
                                                                 seen
\Gamma_{44}
         b-baryon X
                                                         [d] (1.38
                                                                          \pm 0.22 )%
                                                                                                                             DESIG=79
                                                                                       \times 10^{-3}
        anomalous \gamma + \text{hadrons}
\Gamma_{45}
                                                         [e] < 3.2
                                                                                                     CL=95%
                                                                                                                             DESIG=31
        e^+e^-\gamma
                                                                                       \times 10^{-4}
                                                                                                     CL=95%
\Gamma_{46}
                                                         [e] < 5.2
                                                                                                                             DESIG=3
        \mu^+\mu^-\gamma
                                                                                       \times\,10^{-4}
\Gamma_{47}
                                                                                                      CL=95%
                                                         [e] < 5.6
                                                                                                                             DESIG=4
                                                                                       \times 10^{-4}
\Gamma_{48}
                                                         [e] < 7.3
                                                                                                      CL=95%
                                                                                                                             DESIG=29
        \ell^+\ell^-\gamma\gamma
                                                         [f] < 6.8
                                                                                       \times 10^{-6}
\Gamma_{49}
                                                                                                     CL=95%
                                                                                                                             DESIG=45
                                                                                       \times 10^{-6}
                                                                                                     CL=95%
                                                                                                                             DESIG=46
\Gamma_{50}
         q \overline{q} \gamma \gamma
                                                         [f] < 5.5
                                                                                       \times\,10^{-6}
\Gamma_{51}
                                                         [f] < 3.1
                                                                                                     CL=95%
                                                                                                                             DESIG=47
         e^{\pm}\mu^{\mp}
                                                                                       \times\,10^{-6}
\Gamma_{52}
                                               LF
                                                         [c] < 1.7
                                                                                                     CL=95%
                                                                                                                             DESIG=5
        e^{\pm \stackrel{.}{	au}}	au^{\mp}
                                                                                       \times\,10^{-6}
\Gamma_{53}
                                               LF
                                                         [c] < 9.8
                                                                                                      CL=95%
                                                                                                                             DESIG=25
        \mu^{\pm} \tau^{\mp}
                                                                                       \times 10^{-5}
\Gamma_{54}
                                               LF
                                                         [c] < 1.2
                                                                                                      CL=95%
                                                                                                                             DESIG=26
                                                                                       \times 10^{-6}
\Gamma_{55}
        ре
                                               L,B
                                                              < 1.8
                                                                                                      CL=95%
                                                                                                                             DESIG=71
                                               L,B
                                                              < 1.8
                                                                                       \times 10^{-6}
                                                                                                     CL=95%
                                                                                                                             DESIG=72
\Gamma_{56}
        p\mu
```

[a] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.

[b] Here ℓ indicates e or μ .

[c] The value is for the sum of the charge states or particle/antiparticle states indicated.

[d] This value is updated using the product of (i) the $Z \rightarrow$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Zdecays provided by the Heavy Flavor Averaging Group (HFAG, http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2009/#FRACZ).

[e] See the Particle Listings below for the γ energy range used in this measurement.

[f] For $m_{\gamma\gamma}=(60\pm 5)$ GeV.

LINKAGE=DXX

LINKAGE=LEM

LINKAGE=SG

LINKAGE=HFF

LINKAGE=GDZ

LINKAGE=DYY

Z PARTIAL WIDTHS

$\Gamma(e^+e^-)$

 $\Gamma(\mu^+\mu^-)$

 $\Gamma(\tau^+\tau^-)$

 $\Gamma(\ell^+\ell^-)$

 Γ_1

NODE=S044218

For the LEP experiments, this parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044W1 NODE=S044W1

NODE=S044W1

<u>EV</u>TS VALUE (MeV) DOCUMENT ID TECN COMMENT 83.91 ± 0.12 OUR FIT 83.66 ± 0.20 01A OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$ 137.0K **ABBIENDI** 83.54 ± 0.27 117.8k **ABREU** $E_{cm}^{ee} = 88-94 \text{ GeV}$ 84.16 ± 0.22 124.4k **ACCIARRI** 00C $E_{cm}^{ee} = 88-94 \text{ GeV}$ 83.88 ± 0.19 **BARATE** 00c ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ ¹ ABE $82.89 \pm 1.20 \pm 0.89$ 95J SLD $E_{\rm cm}^{ee} = 91.31~{\rm GeV}$

NODE=S044W1;LINKAGE=KG

 $^{
m 1}$ ABE 95J obtain this measurement from Bhabha events in a restricted fiducial region to improve systematics. They use the values 91.187 and 2.489 GeV for the Z mass and total decay width to extract this partial width.

 Γ_2

This parameter is not directly used in the overall fit but is derived using the fit results;

NODE=S044W2 NODE=S044W2

see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044W2

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
83.99±0.18 OUR FIT					
84.03 ± 0.30	182.8K	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
84.48 ± 0.40	157.6k	ABREU	00F	DLPH	$E_{\rm cm}^{\it ee}=$ 88–94 GeV
83.95 ± 0.44	113.4k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
84.02 ± 0.28		BARATE	00C	ALEP	Eee = 88–94 GeV

Гą

NODE=S044W3 NODE=S044W3

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044W3

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
84.08±0.22 OUR FIT					
83.94 ± 0.41	151.5K	ABBIENDI	01A	OPAL	$E_{\rm cm}^{\rm ee}=$ 88–94 GeV
83.71 ± 0.58	104.0k	ABREU	00F	DLPH	Eee = 88–94 GeV
84.23 ± 0.58	103.0k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
$84.38 \!\pm\! 0.31$		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 Γ_{4}

NODE=S044W4

In our fit $\Gamma(\ell^+\ell^-)$ is defined as the partial Z width for the decay into a pair of massless charged leptons. This parameter is not directly used in the 5-parameter fit assuming lepton universality but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044W4

VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT 83.984 ± 0.086 OUR FIT 01A OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$ 83.82 ± 0.15 **ABBIENDI** 471.3K $E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$ 83.85 ± 0.17 379.4k ABREU 84.14 ± 0.17 340.8k **ACCIARRI** $E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$ 00C ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ 84.02 ± 0.15 500k **BARATE**

NODE=S044W4

Γ(invisible)

 Γ_6

NODE=S044W6 NODE=S044W6

We use only direct measurements of the invisible partial width using the single photon channel to obtain the average value quoted below. OUR FIT value is obtained as a difference between the total and the observed partial widths assuming lepton universality.

NODE=S044W6 VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT

499.	0± 1.						
503	±16	OUR	AVERAGE	Error includes scale	factor	of 1.2.	
498	± 12	±12	1791	ACCIARRI	98G	L3	E ^{ee} _{cm} = 88–94 GeV
539	± 26	±17	410	AKERS	95 C	OPAL	E ^{ee} _{cm} = 88–94 GeV
450	± 34	± 34	258	BUSKULIC	93L	ALEP	$E_{cm}^{ee} = 88 – 94 \; GeV$
540	± 80	± 40	52	ADEVA	92	L3	E ^{ee} _{cm} = 88–94 GeV

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

498.1± 2.6	¹ ABBIENDI	01A OPAL	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$
498.1± 3.2	¹ ABREU	00F DLPH	$E_{\rm cm}^{\rm ee}=$ 88–94 GeV
499.1± 2.9	¹ ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
499.1± 2.5	¹ BARATE	00c ALEP	$E_{cm}^{ee} = 88-94 \text{ GeV}$

¹This is an indirect determination of $\Gamma(\text{invisible})$ from a fit to the visible Z decay modes.

NODE=S044W6;LINKAGE=B1

Γ(hadrons)

This parameter is not directly used in the 5-parameter fit assuming lepton universality, but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044W5	
NODE=S044W5	

NODE=S044W5

NODE=S044220

NODE=S044R11 NODE=S044R11

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1744.4±2.0 OUR FIT					
1745.4 ± 3.5	4.10M	ABBIENDI	01A	OPAL	$E_{\rm cm}^{\rm ee}=$ 88–94 GeV
$1738.1\!\pm\!4.0$	3.70M	ABREU	00F	DLPH	Eee = 88–94 GeV
1751.1 ± 3.8	3.54M	ACCIARRI	00C	L3	Eee = 88–94 GeV
1744.0 ± 3.4	4.07M	BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

Z BRANCHING RATIOS

ed NODE=S044220

Γ7

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The $\it Z$ boson" and ref. LEP-SLC 06).

$\Gamma(\text{hadrons})/\Gamma(e^+e^-)$					Γ_7/Γ_1
VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
20.804± 0.050 OUR FIT					
$20.902\!\pm\ 0.084$	137.0K	$^{ m 1}$ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
$20.88 ~\pm~ 0.12$	117.8k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
$20.816 \pm \ 0.089$	124.4k	ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV
$20.677 \pm \ 0.075$		² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the f	ollowing d	ata for averages, fit	s, lim	its, etc.	• • •
$27.0 \begin{array}{r} +11.7 \\ -8.8 \end{array}$	12	³ ABRAMS	89 D	MRK2	<i>E</i> ^{ee} _{cm} = 89−93 GeV

¹ ABBIENDI 01A error includes approximately 0.067 due to statistics, 0.040 due to event selection systematics, 0.027 due to the theoretical uncertainty in *t*-channel prediction, and 0.014 due to LEP energy uncertainty.

$\Gamma(\text{hadrons})/\Gamma(\mu^+\mu^-)$ Γ_7/Γ_2

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT				
20.785±0.033 OUR FIT									
20.811 ± 0.058	182.8K	$^{ m 1}$ abbiendi	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV				
20.65 ± 0.08	157.6k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV				
$20.861 \!\pm\! 0.097$	113.4k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV				
20.799 ± 0.056		² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV				
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
$18.9 {}^{+7.1}_{-5.3}$	13	³ ABRAMS	89D	MRK2	E ^{ee} _{cm} = 89–93 GeV				

 $^{^1}$ ABBIENDI 01A error includes approximately 0.050 due to statistics and 0.027 due to event selection systematics.

NODE=S044R11;LINKAGE=DB

NODE=S044R11;LINKAGE=AC

NODE=S044R11;LINKAGE=AB

NODE=S044R9 NODE=S044R9

NODE=S044R9

NODE=S044R9;LINKAGE=DB

NODE=S044R9;LINKAGE=AC

NODE=S044R9:LINKAGE=AB

² BARATE 00C error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in *t*-channel prediction.

³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

 $^{^2}$ BARATE 00C error includes approximately 0.053 due to statistics and 0.021 due to experimental systematics.

³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors

F/badrara) /F(-+)	
$\Gamma(\text{hadrons})/\Gamma(\tau^+\tau^-)$ Γ_7/Γ_3	NODE=S044R12
OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).	NODE=S044R12
,	NODE=S044R12
<u>VALUE EVTS DOCUMENT ID TECN COMMENT</u> 20.764±0.045 OUR FIT	NODE-3044N12
20.832 ± 0.091 151.5K ¹ ABBIENDI 01A OPAL $E_{ m cm}^{ee}=$ 88–94 GeV	
20.84 \pm 0.13 104.0k ABREU 00F DLPH $E_{ m cm}^{ee} = 88-94 \ { m GeV}$	
20.792 ± 0.133 103.0k ACCIARRI 00C L3 $E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$	
20.707 ± 0.062 2 BARATE 00C ALEP $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$	
15.2 $^{+4.8}_{-3.9}$ 21 3 ABRAMS 89D MRK2 $E^{ee}_{cm} = 89-93$ GeV	
1 ABBIENDI 01A error includes approximately 0.055 due to statistics and 0.071 due to event selection systematics.	NODE=S044R12;LINKAGE=DB
² BARATE 00C error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.	NODE=S044R12;LINKAGE=AC
3 ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.	NODE=S044R12;LINKAGE=AB
$\Gamma(hadrons)/\Gamma(\ell^+\ell^-)$ Γ_7/Γ_4	NODE=S044R20
ℓ indicates each type of lepton (e, μ , and $ au$), not sum over them.	NODE=S044R20
Our fit result is obtained requiring lepton universality. VALUEEVTS	NODE=S044R20
20.767±0.025 OUR FIT	
20.823 ± 0.044 471.3K ¹ ABBIENDI 01A OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$	
20.730±0.060 379.4k ABREU 00F DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$	
20.810±0.060 340.8k ACCIARRI 00C L3 $E_{cm}^{ee} = 88-94 \text{ GeV}$	
20.725±0.039 500k ² BARATE 00C ALEP $E_{\text{cm}}^{\text{ee}}$ = 88–94 GeV	
• • • We do not use the following data for averages, fits, limits, etc. • • • $18.9 {}^{+3.6}_{-3.2} \qquad 46 \qquad \text{ABRAMS} \qquad 89 \text{B} \text{MRK2} E_{\text{cm}}^{ee} = 89 - 93 \text{ GeV}$	
¹ ABBIENDI 01A error includes approximately 0.034 due to statistics and 0.027 due to	NODE COMMON LINUX OF DD
event selection systematics.	NODE=S044R20;LINKAGE=DB
² BARATE 00C error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in t-channel prediction.	NODE=S044R20;LINKAGE=AC
$\Gamma(\text{hadrons})/\Gamma_{\text{total}}$ Γ_7/Γ	NODE COMPO
This parameter is not directly used in the overall fit but is derived using the fit results;	NODE—S044R8
see the note "The Z boson" and ref. LEP-SLC 06.	NODE=S044R8
<u>VALUE (%)</u> <u>DOCUMENT ID</u> 69.911±0.056 OUR FIT	NODE=S044R8
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$ Γ_1/Γ	
, , ,	NODE=S044R1
This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.	NODE=S044R1
VALUE (%) DOCUMENT ID DOCUMENT ID	NODE=S044R1
$(3363.2\pm4.2)\times10^{-3}$ OUR FIT	
r/+=\/r	
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_2/Γ	NODE=S044R2
This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.	NODE=S044R2
VALUE (%) DOCUMENT ID DOCUMENT ID	NODE=S044R2
$(3366.2\pm6.6) \times 10^{-3}$ OUR FIT	
$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$ Γ_2/Γ_1	NODE=S044R3
This parameter is not directly used in the overall fit but is derived using the fit results;	NODE=5044R3 NODE=\$044R3
see the note "The Z boson" and ref. LEP-SLC 06.	
<u>VALUE</u> <u>DOCUMENT ID</u> 1.0009±0.0028 OUR FIT	NODE=S044R3
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$	NODE CONTRO
This parameter is not directly used in the overall fit but is derived using the fit results;	NODE = \$044R10
see the note "The Z boson" and ref. LEP-SLC 06.	NODE=S044R10
VALUE (%) DOCUMENT ID	NODE=S044R10
$(3369.6\pm8.3)\times10^{-3}$ OUR FIT	

$\Gamma(au^+ au^-)/\Gamma(e^+e^-)$	Γ ₃	/Γ1 NODE=S044R19
	directly used in the overall fit but is derived using the fit resposon" and ref. LEP-SLC 06.	sults; NODE=S044R19
VALUE 1.0019±0.0032 OUR FIT		NODE=S044R19
$\Gamma(\ell^+\ell^-)/\Gamma_{ m total}$	Г	14/Γ NODE—S044R28
• •	of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.	*/
Our fit result assumes		NODE_3044N20
		lan.
-	directly used in the overall fit but is derived using the fit resposon" and ref. LEP-SLC 06.	
$\frac{VALUE\ (\%)}{(3365.8\pm2.3)\times10^{-3}\ OUR}$	DOCUMENT ID	NODE=S044R28
	rii	
$\Gamma(\ell^+\ell^-\ell^+\ell^-)/\Gamma_{total}$	Γ	₅ /Γ NODE=S044R01
Here ℓ indicates either	•	NODE=\$044R01 NODE=\$044R01
<u>VALUE (units 10⁻⁶)</u> <u>EV7</u>		NODE_3044R01
$4.2^{+0.9}_{-0.8} \pm 0.2$	CHATRCHYAN 12BN CMS $E_{cm}^{pp} = 7 \text{ TeV}$	•
$\Gamma(\text{invisible})/\Gamma_{\text{total}}$	Г	6/ Г
,	, and the fit result for the partial width, Γ_6 , above.	NODE=S044R30 NODE=S044R30
VALUE (%)	DOCUMENT ID	NODE=S044R30
20.000±0.055 OUR FIT		
$\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(hadro$	ons) F ₈	/Γ₇ NODE=S044R21
	anching ratio of $Z o$ "up-type" quarks to $Z o$ hadrons. Ex	ccept NODE=S044R21
	e values of $Z \rightarrow$ "up-type" and $Z \rightarrow$ "down-type" branching	
	ements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a lisolated photon. As the experiments use different process	
	alues of M_Z , $\Gamma(\text{hadrons})$ and α_S in their extraction proced	
our average has to be		NODE_5044P21
<u>VALUE</u> 0.166±0.009 OUR AVERAG		NODE=S044R21
$0.172^{igoplus 0.011}_{igoplus 0.010}$	1 ABBIENDI 04E OPAL $E_{ m cm}^{\it ee}=91.2~{ m GeV}$	
$0.160\pm0.019\pm0.019$	2 ACKERSTAFF 97T OPAL $E_{ m cm}^{\it ee}=$ 88–94 GeV	
$0.137 {+0.038 \atop -0.054}$	3 ABREU 95x DLPH $E_{\rm cm}^{\rm ee}=$ 88–94 GeV	
0.137 ± 0.033	⁴ ADRIANI 93 L3 $E_{cm}^{ee} = 91.2 \text{ GeV}$	
¹ ABBIENDI 04E select ph	otons with energy $>$ 7 GeV and use $\Gamma(\text{hadrons}) = 1744.4$ =	± 2.0 NODE=S044R21;LINKAGE=AB
MeV and $lpha_{\it S}=$ 0.1172 \pm	$_{-}$ 0.002 to obtain $\Gamma_{\mu}=300^{+19}_{-18}$ MeV.	
² ACKERSTAFF 97T meas	ure $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.258\pm0.031\pm0.032$. To of	otain NODE=S044R21;LINKAGE=D
this branching ratio auth	ure $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.258\pm0.031\pm0.032$. To observe use $R_c+R_b=0.380\pm0.010$. This measurement is a the measurement of $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$ given in	fully the
next data block.	$dd, s\bar{s}^{/}$ dd^{+} uu^{+} ss^{\prime} given in	· inc
3 ABREU 95X use $M_Z = 9$	91.187 ± 0.009 GeV, $\Gamma(ext{hadrons})=1725\pm12$ MeV and ϵ	$\frac{\alpha_s}{0.25}$ NODE=S044R21;LINKAGE=C
0.123 ± 0.005 . To obtain	this branching ratio we divide their value of $C_{2/3} = 0.91^{+}_{-}$	0.36
	$+2C_{2/3}$) = 6.66 ± 0.05.	
0.125 ± 0.009 . To obtain	91.181 \pm 0.022 GeV, Γ (hadrons) $=$ 1742 \pm 19 MeV and ϵ this branching ratio we divide their value of $C_{2/3}=0.92\pm$	$a_s = NODE = S044R21; LINKAGE = B$
	$+2C_{2/3}$) = 6.720 ± 0.076.	
$\Gamma((d\overline{d}+s\overline{s}+b\overline{b})/3)/\Gamma($	hadrons) Fo	/Γ₇ ΝΟΝΕS044R22
** ** **	ranching ratio of $Z o $ "down-type" quarks to $Z o $ had	, , NODE=30441(22
	97T the values of $Z o$ "up-type" and $Z o$ "down-type" bra	
	n measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ who	
	or 7 GeV) isolated photon. As the experiments use differ different values of M_Z , $\Gamma({ m hadrons})$ and $lpha_{ m S}$ in their extra	
	the has to be taken with caution.	
VALUE 0.223±0.006 OUR AVERAG	DOCUMENT ID TECN COMMENT	NODE=\$044R22
0.218±0.007	1 ABBIENDI 04E OPAL $E_{ m cm}^{ m ee}=91.2~{ m GeV}$	
$0.230 \pm 0.010 \pm 0.010$	2 ACKERSTAFF 97T OPAL $E_{\rm cm}^{\rm ee}=88-94~{\rm GeV}$	
$0.243^{igoplus 0.036}_{-0.026}$	3 ABREU 95X DLPH $E_{\text{cm}}^{\text{ee}} = 88-94 \text{ GeV}$	
-0.020 0.243±0.022	4 ADRIANI 03 13 Fee — 01 2 CoV	

 $E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$

⁴ ADRIANI

93 L3

 0.243 ± 0.022

 1 ABBIENDI 04E select photons with energy > 7 GeV and use $\Gamma({\rm hadrons})=1744.4\pm2.0$ MeV and $\alpha_{\rm S}=0.1172\pm0.002$ to obtain $\Gamma_{\rm d}=381\pm12$ MeV.

²ACKERSTAFF 97T measure $\Gamma_{d\,\overline{d},s\,\overline{s}}/(\Gamma_{d\,\overline{d}}+\Gamma_{u\,\overline{u}}+\Gamma_{s\,\overline{s}})=0.371\pm0.016\pm0.016$. To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{u\,\overline{u}}/(\Gamma_{d\,\overline{d}}+\Gamma_{u\,\overline{u}}+\Gamma_{s\,\overline{s}})$ presented in the previous data block.

³ ABREU 95X use $M_Z=91.187\pm0.009$ GeV, Γ(hadrons) = 1725 ± 12 MeV and $\alpha_s=0.123\pm0.005$. To obtain this branching ratio we divide their value of $C_{1/3}=1.62^{+0.24}_{-0.17}$ by their value of $(3C_{1/3}+2C_{2/3})=6.66\pm0.05$.

⁴ ADRIANI 93 use $M_Z=91.181\pm0.022$ GeV, $\Gamma({\rm hadrons})=1742\pm19$ MeV and $\alpha_s=0.125\pm0.009$. To obtain this branching ratio we divide their value of $C_{1/3}=1.63\pm0.15$ by their value of $(3C_{1/3}+2C_{2/3})=6.720\pm0.076$.

$R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$

 Γ_{10}/Γ_{7}

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts $R_c=0.1723$ for $m_t=174.3$ GeV and $M_H=150$ GeV.

VALUE	DOCUMENT ID		TECN	COMMENT
0.1721 ± 0.0030 OUR FIT				
$0.1744 \!\pm\! 0.0031 \!\pm\! 0.0021$	¹ ABE	05F	SLD	<i>E</i> ^{ee} _{cm} =91.28 GeV
$0.1665\!\pm\!0.0051\!\pm\!0.0081$	² ABREU	00	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.1698\!\pm\!0.0069$				<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.180\ \pm0.011\ \pm0.013$	⁴ ACKERSTAFF	98E	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.167\ \pm0.011\ \pm0.012$	⁵ ALEXANDER	96R	OPAL	E ^{ee} _{cm} = 88–94 GeV
ullet $ullet$ We do not use the fo	llowing data for a	verage	es, fits, l	imits, etc. • • •
$0.1623 \pm 0.0085 \pm 0.0209$	⁶ ABREU	95 D	DLPH	E ^{ee} _{cm} = 88–94 GeV

 1 ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $c\overline{c}$ events using a double tag method. The single c–tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere). A multitag approach is used, defining 4 regions of the output value of the neural network and R_c is extracted from a simultaneous fit to the count rates of the 4 different tags. The quoted systematic error includes an uncertainty of ± 0.0006 due to the uncertainty on R_b .

 2 ABREU 00 obtain this result properly combining the measurement from the D^{*+} production rate ($R_c = 0.1610 \pm 0.0104 \pm 0.0077 \pm 0.0043$ (BR)) with that from the overall charm counting ($R_c = 0.1692 \pm 0.0047 \pm 0.0063 \pm 0.0074$ (BR)) in $c \, \overline{c}$ events. The systematic error includes an uncertainty of ± 0.0054 due to the uncertainty on the charmed hadron branching fractions.

 3 BARATE 00B use exclusive decay modes to independently determine the quantities $R_c\times {\rm f}(c\to {\rm X}),\,{\rm X}{=}D^0,\,D^+,\,D^+_s,\,{\rm and}\,\Lambda_c.$ Estimating $R_c\times {\rm f}(c\to {\Xi_c}/\Omega_c){=}~0.0034,$ they simply sum over all the charm decays to obtain $R_c{=}~0.1738\pm0.0047\pm0.0088\pm0.0075({\rm BR}).$ This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G, $R_c{=}~0.1681\pm0.0054\pm0.0062)$ to obtain the quoted value.

⁴ ACKERSTAFF 98E use an inclusive/exclusive double tag. In one jet $D^{*\pm}$ mesons are exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive $D^{*\pm}$) tag is used. The b content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed $D^{*\pm}$ meson in the opposite jet. The systematic error includes an uncertainty of ± 0.006 due to the external branching ratios.

SALEXANDER 96R obtain this value via direct charm counting, summing the partial contributions from D^0 , D^+ , D_s^+ , and Λ_c^+ , and assuming that strange-charmed baryons account for the 15% of the Λ_c^+ production. An uncertainty of ± 0.005 due to the uncertainties in the charm hadron branching ratios is included in the overall systematics.

 6 ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0124 due to models and branching ratios.

$R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

 Γ_{11}/Γ_{7}

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts R_b =0.21581 for m_t =174.3 GeV and M_H =150 GeV.

NODE=S044R22;LINKAGE=AB

NODE=S044R22;LINKAGE=D

NODE=S044R22;LINKAGE=C

NODE=S044R22;LINKAGE=B

NODE=S044R29 NODE=S044R29

NODE=S044R29

NODE=S044R29;LINKAGE=AB

NODE=S044R29;LINKAGE=Z

NODE=S044R29;LINKAGE=T

NODE=S044R29;LINKAGE=H

NODE=S044R29;LINKAGE=G

NODE=S044R29;LINKAGE=AR

NODE=S044R18 NODE=S044R18

<u>VALUE</u>	0 ± 0 0006	6 OUR FIT	DOCUMENT ID		<u>TECN</u>	COMMENT	NODE=S044R18
		4±0.00075	¹ ABE	05E	SLD	<i>E</i> ^{ee} _{cm} =91.28 GeV	
	± 0.0015		² ACCIARRI	00	L3	$E_{\rm cm}^{ee} = 89-93 \text{ GeV}$	
	±0.0011		³ ABBIENDI			E _{cm} ^{ee} = 88–94 GeV	
		7 ± 0.00060	⁴ ABREU			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
	±0.0009		⁵ BARATE			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	
			ring data for averag				
	±0.0089		⁶ ABREU			E _{cm} ^{ee} = 88–94 GeV	OCCUR=2
0.219	±0.006	± 0.005	⁷ BUSKULIC			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$	000011 2
0.251	± 0.049	± 0.030	8 JACOBSEN	91		$E_{\rm cm}^{ee} = 91 \text{ GeV}$	
of network of the to the	bb events work train ted second hemisphe be above the sys. The valu	using a doubled to perform lary vertex mater; the key tag the D-meson itematic error in error reported here	le tag method. TI flavor discriminati ss, vertex decay lei g is obtained requi mass). ABE 05F o ncludes an uncertai e is obtained prope	he sing on usir ngth, n iring th btain F inty of erly con	le b-tag $_{ m ng}$ as input $_{ m nultiplicit}$	obtain an enriched sample is obtained with a neural put several signatures (corty and total momentum of dary vertex corrected mass $604 \pm 0.00098 \pm 0.00074$ 2 due to the uncertainty on with ABE 98D. The quoted the uncertainty on P.	NODE=S044R18;LINKAGE=AB
² AC	CIARRI 00) obtain this re	uncertainty of ±0 sult using a double er tag in opposite	-taggin	g techni	the uncertainty on ${\it R}_c.$ que, with a high ${\it p}_T$ lepton	NODE=S044R18;LINKAGE=Z
³ AB	BIENDI 9	9B tag $Z o b$	\overline{b} decays using lept	tons an	d/or sep	arated decay vertices. The double-tagging technique.	NODE=S044R18;LINKAGE=IB
⁴ AB ods sha	REU 99B o	obtain this resuparameter and es). For R_{c} dif	ılt combining in a ı d secondary vertex	multiva recon	riate ana struction	llysis several tagging meth- ,, complemented by event alue of 0.172, R _b varies as	NODE=S044R18;LINKAGE=I
⁵ BA info <i>u d</i>	RATE 97F ormation a s-selection	combine the li and lepton tag a tags to identi	to identify $Z \rightarrow$	$b\overline{b}$ ca For R	ndidates	ATE 97E) with event shape . They further use <i>c</i> - and nt from its Standard Model	NODE=S044R18;LINKAGE=W
of s	single and	dilepton samp	imum likelihood fi oles. The second o	t to th	e combir Icludes a	ned p and p_T distributions in uncertainty of ± 0.0023	NODE=S044R18;LINKAGE=AR
of s due 7 BU	single and e to model SKULIC 9	dilepton samp s and branchin 4G perform a s	kimum likelihood fi oles. The second of g ratios.	t to the error in	icludes a	ned p and p_T distributions in uncertainty of ± 0.0023 spectra of both single and	NODE=S044R18;LINKAGE=AR NODE=S044R18;LINKAGE=BB
of s due ⁷ BU dile ⁸ JA(imp	single and to model SKULIC 9 epton even COBSEN 9 pact paran	dilepton samps and branchind $4G$ perform as ts. 91 tagged $b\overline{b}$ e	kimum likelihood fi bles. The second of gratios. simultaneous fit to events by requiring	t to the error in the p	and $\ensuremath{p_T}$ ence of	n uncertainty of ± 0.0023	
of s due ⁷ BU dile ⁸ JAC imp unc	single and to model SKULIC 9 epton even COBSEN 9 pact paran certainties	dilepton samps and branching sand branching sand branching sand sand sand sand sand sand sand sand	kimum likelihood fi bles. The second of gratios. simultaneous fit to events by requiring	t to the error in the p	and $\ensuremath{p_T}$ ence of	spectra of both single and ≥ 3 tracks with significant ncludes lifetime and decay	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B
of s due 7 BU dile 8 JAC imp unc	single and e to model SKULIC 9 epton even COBSEN 9 paran certainties $b\bar{b}/\Gamma(ha)$	dilepton samps and branching sand branching sand branching sand sand sand sand sand sand sand sand	kimum likelihood fi bles. The second of gratios. simultaneous fit to events by requiring ertex detector. Sys	t to the error in the p coincidstemati	and p_T ence of ${ m c}$ error ${ m i}$	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay Γ_{12}/Γ_7	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4
of s due 7 BU dile 8 JAC imp unc F(bbb	single and to model SKULIC 9 epton even COBSEN 9 pact parametertainties $b\overline{b}/\Gamma(h$ units $10^{-4})$	dilepton samps and branchin 4G perform a sts. 91 tagged $b\overline{b}$ eneters using ve (± 0.014) .	kimum likelihood fi bles. The second of gratios. simultaneous fit to events by requiring	t to the error in the p coincid stemati	and $\ensuremath{p_T}$ ence of	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay Γ_{12}/Γ_7	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B
of s due 7 BU dile 8 JAC imp unc F(bbb	single and a to model SKULIC 9 expton even COBSEN 9 exert parametertainties $b\overline{b}/\Gamma(h$	dilepton samps and branchin 4G perform a sts. 91 tagged $b\overline{b}$ eneters using ve (± 0.014) .	kimum likelihood fi bles. The second of gratios. simultaneous fit to events by requiring ertex detector. Sys	t to the error in the p coincid stemation	and p_T ence of c error in $\frac{TECN}{TECN}$	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay $ \Gamma_{12}/\Gamma_7 $	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4
of solution of sol	single and to model SKULIC 9 septon even COBSEN 9 spact paran certainties bb//(hair 10 ⁻⁴) 9 OUR AN 7±2.7	dilepton samps and branchin 4G perform a sts. 91 tagged $b\overline{b}$ eneters using ve (± 0.014) .	simum likelihood fi bles. The second of gratios. simultaneous fit to events by requiring ertex detector. Sys	t to the error in the p coincid stemation	and p_T lence of c error in $\frac{TECN}{G}$	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay $ \Gamma_{12}/\Gamma_{7} $ $ COMMENT $ $ E_{cm}^{ee} = 88-94 \text{ GeV} $	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4
of s due 7 BU dile 8 JAC imp unc Γ(bbb <u>VALUE</u> (c 5.2±1. 3.6±1. 6.0±1.	single and the to model of the model of the model of SKULIC 9 epton even constant the second of the model of	dilepton samps and branching sand branching sand branching sand branching sand sand sand sand sand sand sand sand	imum likelihood fi bles. The second of g ratios. simultaneous fit to events by requiring ertex detector. Sys DOCUMENT II ABBIENDI ABREU e of four-jet events	t to the error in the p coincid stemation of the p of the	and p_T lence of c error in $\frac{TECN}{C}$ OPAL DLPH hadronic	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay $ \Gamma_{12}/\Gamma_7 $	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4
of s due 7 BU dile 8 JAC imp unc F(bbb 1 3.6±1. 6.0±1. 1 AB bb secc 2 AB and	single and a to model SKULIC 9 expton even COBSEN 9 exert parametertainties $b\bar{b}/\Gamma$ (have the following signal of $b\bar{b}$ signal, ondary verall require a few to model of the following signal of t	dilepton samps and branchin 4G perform a st. 21 tagged $b\bar{b}$ eneters using verifications (± 0.014). adrons) /ERAGE 1G use a sample at least three stex. force hadronic b tag for even	imum likelihood fi bles. The second of g ratios. simultaneous fit to events by requiring ertex detector. Sys DOCUMENT II ABBIENDI ABREU The of four-jet events of the four jets are at Z decays into 3	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemat	and p_T dence of cerror in $\frac{TECN}{DDPH}$ hadroniced to hause all	spectra of both single and \geq 3 tracks with significant includes lifetime and decay $ \Gamma_{12}/\Gamma_7 $ $ COMMENT $ $ E_{cm}^{ee} = 88-94 \text{ GeV} $ $ E_{cm}^{ee} = 88-94 \text{ GeV} $ $ Z \text{ decays. To enhance the } $	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4
of s due 7 BU diled 8 JAC imp unc Γ(bbl 1 3.6±1. 3.6±1. 4 AB b b b c second pro Γ(ggl 2 ALUE (VALUE	single and a to model SKULIC 9 expron even COBSEN 9 pact parantertainties $b\bar{b}/\Gamma$ (hounts 10^{-4}). 9 OUR AN 7 ± 2.7 9 ±1.4 BIENDI 0 $b\bar{b}$ signal, ondary ven REU 990 d require a duction, expression of the signal of th	dilepton samps and branchin 4G perform a st. $\frac{1}{2}$ tagged $\frac{1}{2}$ b eneters using verifications $\frac{1}{2}$ ($\frac{1}{2}$ use a samplat least three tex. force hadronic $\frac{1}{2}$ b tag for everifications, from gluon	imum likelihood fi bles. The second of g ratios. Simultaneous fit to events by requiring ertex detector. Sys DOCUMENT II ABBIENDI ABREU e of four-jet events of the four jets are events Z decays into 3 ry jet. This decay	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemat	and p_T dence of cerror in $\frac{TECN}{DDPH}$ hadroniced to hause all	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4 NODE=S044B4;LINKAGE=B
of s due 7 BU diled 8 JAC imp unc Γ(bbl 1 3.6±1. 3.6±1. 4 AB b b b c second pro Γ(ggl 2 ALUE (VALUE	single and a to model SKULIC 9 epton even COBSEN 9 coact parantertainties $b\overline{b}/\Gamma$ (hounts 10^{-4}). 9 OUR AN 7 ± 2.7 9 ±1.4 BIENDI 0 $b\overline{b}$ signal, ondary ven REU 99U I require a diduction, equivalent to make the signal of the signa	dilepton samps and branchin 4G perform a st. $\frac{1}{2}$ tagged $\frac{1}{2}$ $\frac{1}{2}$ tagged	simum likelihood fibles. The second of gratios. The second of gratios. Simultaneous fit to events by requiring ertex detector. System $\frac{DOCUMENT\ II}{2}$ ABBIENDI $\frac{1}{2}$ ABREU de of four-jet events of the four jets are started at Z decays into $\frac{3}{2}$ y jet. This decay splitting to $b\overline{b}$.	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemat	and p_T lence of cerror in $\frac{TECN}{TECN}$ of OPAL use all includes $\frac{TECN}{TECN}$	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63
of sidue 7 BU dile 8 JAC imp unc Γ(bbl 5.2±1. 3.6±1. 6.0±1. 1 AB bb secc 2 AB and pro Γ(ggl VALUE <1.6 × 1 Thi is o	single and a to model SKULIC 9 epton even COBSEN 9 pact paran certainties $b\bar{b}/\Gamma(h)$ (high signal, ondary verification, example) $b\bar{b}$ require a duction, example $b\bar{b}/\Gamma(h)$ (had so to be a factor) $b\bar{b}$ signal, ondary verification, example $b\bar{b}$ signal, ondary verification $b\bar{b}$ signal,	dilepton samps and branching sand sand sand sand sand sand sand sand	imum likelihood fibles. The second of gratios. The second of gratios. Simultaneous fit to events by requiring extex detector. System $\frac{DOCUMENT\ L}{2}$ ABBIENDI $\frac{1}{2}$ ABREU sof the four-jet events of the four-jet are explicitly applied to $\frac{1}{2}$ ABREU. This decay splitting to $\frac{1}{2}$ ABREU applied to $\frac{1}{2}$ ABREU styles dependent on the algorithm, while use $\frac{1}{2}$ ABREU.	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemati	and p_T lence of cerror in the cerror in	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63
of sidue 7 BU dile 8 JAC imp unc Γ(bbl 5.2±1. 3.6±1. 6.0±1. 1 AB bb secc 2 AB and pro Γ(ggl VALUE <1.6 × 1 Thi is o obt Γ(π ⁰ γ)	single and a to model SKULIC 9 epton even COBSEN 9 pact paran certainties $b\bar{b}/\Gamma(h)$ (high signal, ondary verification, example) $b\bar{b}$ require a duction, example $b\bar{b}/\Gamma(h)$ (had so to be a factor) $b\bar{b}$ signal, ondary verification, example $b\bar{b}$ signal, ondary verification $b\bar{b}$ signal,	dilepton samps and branching sand sand sand sand sand sand sand sand	isimum likelihood fiples. The second of gratios. The second of gratios. Simultaneous fit to events by requiring extex detector. System $\frac{DOCUMENT\ II}{2}$ ABBIENDI $\frac{1}{2}$ ABREU de of four-jet events of the four-jet events of the four-jet sare at Z decays into $\frac{3}{2}$ splitting to $\frac{1}{2}$ ABREU abbies. $\frac{DOCUMENT\ II}{2}$ ABREU algorithm, while us $\frac{1}{2} \times 10^{-2}$.	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemati	and p _T lence of c error in the centre of t	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay F12/F7 COMMENT E ^{ee} _{cm} = 88–94 GeV E ^{ee} _{cm} = 88–94 GeV Z decays. To enhance the ve a significantly detached the available phase space primary and secondary 4b F13/F7 COMMENT E ^{ee} _{cm} = 88–94 GeV orithm. The value we quote AM algorithm ABREU 96s	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63 NODE=S044R63 NODE=S044R63 NODE=S044R63;LINKAGE=A
of sidue 7 BU dile 8 JAC imp unc Γ(bbl 5.2±1. 3.6±1. 6.0±1. 1 AB bb secc 2 AB and pro Γ(ggl VALUE <1.6 × 1 Thi is o obt Γ(π ⁰ VALUE	single and a to model SKULIC 9 epton even COBSEN 9 pact param certainties $b\bar{b}/\Gamma(h)$ (high signal, ondary verification, expected by $\bar{b}/\Gamma(h)$) and $\bar{b}/\Gamma(h)$ is branching brained usin an upper $\bar{b}/\Gamma(h)$ (half signal, ondary verification, expected by $\bar{b}/\Gamma(h)$) $\bar{b}/\Gamma(h)$ is branching brained usin an upper $\bar{b}/\Gamma(h)$) $\bar{b}/\Gamma(h)$	dilepton samps and branchings and branchings and branchings and branchings are to the content of	immum likelihood fibles. The second of gratios. The second of gratios. Simultaneous fit to events by requiring extex detector. System $\frac{DOCUMENT\ II}{2}$ ABBIENDI $\frac{1}{2}$ ABREU e of four-jet events of the four-jet sare $\frac{1}{2}$ Z decays into $\frac{3}{2}$ splitting to $\frac{1}{2}$ ABREU ely dependent on the algorithm, while use $\frac{1}{2}$ X $\frac{1}{2}$ $\frac{1}{2}$ ABREU ely dependent on the algorithm, while use $\frac{1}{2}$ X $\frac{1}{2}$ $\frac{1}{$	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemati	and pT lence of c error in TECN OPAL DLPH hadroniced to ha use all includes TECN DLPH nder algoe DURH	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay F12/F7 COMMENT Eee 88-94 GeV Eee 88-94 GeV Z decays. To enhance the ve a significantly detached the available phase space primary and secondary 4b F13/F7 COMMENT Eee 88-94 GeV orithm. The value we quote AM algorithm ABREU 96s F14/F	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63 NODE=S044R63 NODE=S044R63
of sidue 7 BU dile 8 JAC imp unc Γ(bbl 5.2±1. 3.6±1. 6.0±1. 1 AB bb secc 2 AB and pro Γ(gge VALUE <1.6 × 1 Thi is o obt Γ(π ⁰ γ VALUE <5.2 ×	single and a to model SKULIC 9 epton even COBSEN 9 coact paran certainties $b\bar{b}/\Gamma$ (h. units 10^{-4}) 9 OUR AN 7 ± 2.7 9 ±1.4 BIENDI 0 $b\bar{b}$ signal, ondary verification, e g / Γ (had to be to b	dilepton samps and branching sand branching sand branching sand branching sand branching sand branching sand sand sand sand sand sand sand sand	is simum likelihood findles. The second of gratios. The second of gratios. Simultaneous fit to exents by requiring extex detector. System $\frac{DOCUMENT\ II}{2}$ ABBIENDI $\frac{1}{2}$ ABREU et of four-jet events of the four jets are started as $\frac{Z}{2}$ decays into $\frac{3}{2}$. Splitting to $\frac{DOCUMENT\ II}{2}$ ABREU et algorithm, while using $\frac{DOCUMENT\ II}{2}$ ACCIARRI	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemati	and pT lence of c error in TECN G OPAL DLPH hadroniced to ha use all includes TECN DLPH nder algoe DURH TECN L3	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay F12/F7 COMMENT Eee = 88–94 GeV Z decays. To enhance the ve a significantly detached the available phase space primary and secondary 4b F13/F7 COMMENT Eee = 88–94 GeV orithm. The value we quote AM algorithm ABREU 96s F14/F COMMENT Eee = 88–94 GeV	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63 NODE=S044R63 NODE=S044R63 NODE=S044R63;LINKAGE=A
of sidue 7 BU dile 8 JAC imp unc Γ(bbl 5.2±1. 3.6±1. 6.0±1. 1 AB bb. secc 2 AB and pro Γ(gg) VALUE <1.6 × 1 Thi is o obt Γ(π ⁰ γ VALUE <5.2 × <5.5 ×	single and a to model sKULIC 9 epton even COBSEN 9 coact paran certainties $b\bar{b}/\Gamma$ (haunits 10^{-4}). 9 OUR AN 7 ± 2.7 9 ±1.4 BIENDI 0 $b\bar{b}$ signal, ondary verification, e g / Γ (haunits 10^{-2} is branchinobtained ustain an upper g / Γ / Γ total g /	dilepton samps and branchin 4G perform a st. 21 tagged $b\bar{b}$ eneters using ve (± 0.014). adrons) /ERAGE 1G use a sampl at least three stex. force hadronic b tag for every b to b tag for every b sing ratio is slight sing the JADE per limit of 1.5 95 95	cimum likelihood fibles. The second of ples. The second of gratios. Simultaneous fit to events by requiring ertex detector. System $\frac{DOCUMENT\ II}{2}$ ABBIENDI $\frac{1}{2}$ ABREU er of four-jet events of the four jets are considered as $\frac{Z}{2}$ decays into $\frac{Z}{2}$ y jet. This decay splitting to $\frac{DOCUMENT\ II}{2}$ ABREU ely dependent on the algorithm, while use $\frac{DOCUMENT\ II}{2}$ ACCIARRI ABREU	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemat	and pT lence of c error in	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay F12/F7 COMMENT Eee = 88-94 GeV Z decays. To enhance the ve a significantly detached the available phase space primary and secondary 4b F13/F7 COMMENT Eee = 88-94 GeV orithm. The value we quote AM algorithm ABREU 96s F14/F COMMENT Eee = 88-94 GeV Eee = 88-94 GeV Eee = 88-94 GeV	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63 NODE=S044R63 NODE=S044R63 NODE=S044R63;LINKAGE=A
of sidue 7 BU dile 8 JAC imp unc Γ(bbl 5.2±1. 3.6±1. 6.0±1. 1 AB bb secc 2 AB and pro Γ(gg, VALUE <1.6 × 1 Thi is o obt Γ(π ⁰ γ VALUE <5.2 × <5.5 × <2.1 ×	single and a to model sKULIC 9 epton even COBSEN 9 coact paran certainties $b\bar{b}/\Gamma$ (haunits 10^{-4}). 9 OUR AN 7 ± 2.7 9 ±1.4 BIENDI 0 $b\bar{b}$ signal, ondary verification, e g / Γ (haunits 10^{-2} is branchinobtained ustain an upper g / Γ / Γ total g /	dilepton samps and branching and branching and branching atts. 201 tagged $b\bar{b}$ eneters using verifications (± 0.014). 213 adrons 214 (± 0.014). 215 adrons 216 use a sample at least three attex. 217 force hadronical b bag for even b and b tag for even b b and b are given by b and b are given by b and b are limit of 1.50	is simum likelihood findles. The second of gratios. The second of gratios. Simultaneous fit to exents by requiring extex detector. System $\frac{DOCUMENT\ II}{2}$ ABBIENDI $\frac{1}{2}$ ABREU et of four-jet events of the four jets are started as $\frac{Z}{2}$ decays into $\frac{3}{2}$. Splitting to $\frac{DOCUMENT\ II}{2}$ ABREU et algorithm, while using $\frac{DOCUMENT\ II}{2}$ ACCIARRI	t to the error in the p coincid stemation of the p coincid stematic of the p coincid stemat	and pT lence of c error in the certain section in the certain sectin	spectra of both single and ≥ 3 tracks with significant includes lifetime and decay F12/F7 COMMENT Eee = 88–94 GeV Z decays. To enhance the ve a significantly detached the available phase space primary and secondary 4b F13/F7 COMMENT Eee = 88–94 GeV orithm. The value we quote AM algorithm ABREU 96s F14/F COMMENT Eee = 88–94 GeV	NODE=S044R18;LINKAGE=BB NODE=S044R18;LINKAGE=B NODE=S044B4 NODE=S044B4;LINKAGE=B NODE=S044B4;LINKAGE=A NODE=S044R63 NODE=S044R63 NODE=S044R63 NODE=S044R63;LINKAGE=A

 $^{^1}$ This limit is for both decay modes $Z \to \pi^0 \gamma/\gamma \gamma$ which are indistinguishable in ACCIA-RRI 95G.

NODE=S044R13;LINKAGE=C

$\Gamma(\eta\gamma)/\Gamma_{total}$					Г ₁	₅ /Γ	NODE=S044R14
VALUE		DOCUMENT ID		TECN	COMMENT		NODE=S044R14
$< 7.6 \times 10^{-5}$	95	ACCIARRI	95 G		E ^{ee} _{cm} = 88–94 GeV		
$< 8.0 \times 10^{-5}$	95	ABREU			E ^{ee} _{cm} = 88–94 GeV		
<5.1 × 10 ⁻⁵	95	DECAMP	92	ALEP	CITI		
$< 2.0 \times 10^{-4}$	95	AKRAWY	91F	OPAL	Eee = 88–94 GeV		
$\Gamma(\omega\gamma)/\Gamma_{\text{total}}$						₆ /Γ	NODE=\$044R48
<u>VALUE</u> <6.5 × 10 ^{−4}	<i>CL%</i> _ 95	<u>DOCUMENT ID</u> ABREU	94B	TECN DLPH	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$		NODE=S044R48
Γ(α/(0E9)α) /Γ						_ /Γ	
$\Gamma(\eta'(958)\gamma)/\Gamma_{\text{total}}$	CL%	DOCUMENT ID		TECN	COMMENT	₇ /Γ	NODE=S044R15 NODE=S044R15
$\frac{\text{VALUE}}{\text{<4.2} \times 10^{-5}}$	95	DECAMP	92	ALEP			NODE-3044KI3
$\Gamma(\gamma\gamma)/\Gamma_{total}$						₈ /Γ	NODE=S044R16
This decay would VALUE		he Landau-Yang the DOCUMENT ID	eorem		COMMENT		NODE=S044R16 NODE=S044R16
<5.2 × 10 ^{−5}	<i>CL%</i> _ 95	¹ ACCIARRI	95G		$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$		NODE—SOTTINIO
$<5.5 \times 10^{-5}$	95 95	ABREU			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$		
$< 1.4 \times 10^{-4}$	95 95	AKRAWY			$E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$		
$^{ m 1}$ This limit is for bot						CIA-	NODE=S044R16;LINKAGE=C
RRI 95G.		•					11052 00111120,21111111102
$\Gamma(\gamma\gamma\gamma)/\Gamma_{total}$						7/و	NODE=\$044R17
<u>VALUE</u> <1.0 × 10 ^{−5}	<u>CL%</u>	DOCUMENT ID 1 ACCIARRI	05.0		<u>COMMENT</u>		NODE=S044R17
$<1.7 \times 10^{-5}$	95 95	¹ ABREU	95C		$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$ $E_{\rm cm}^{ee} = 88-94 \text{ GeV}$		
$< 6.6 \times 10^{-5}$	95 95	AKRAWY			$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$		
1 Limit derived in the				OIAL	-cm- 00 94 GeV		
	e context (or composite Z mo	aei.				NODE=S044R17;LINKAGE=AB
$\Gamma(\pi^{\pm} W^{\mp})/\Gamma_{\text{total}}$							
'(" " // total					Γ ₂	₀ /Γ	NODE=S044R32
The value is for t		f the charge states	indica			₀ /Γ	NODE=S044R32
The value is for t	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	₀ /Γ	
The value is for t		-	indica —— 92			₀ /Γ	NODE=S044R32
The value is for the value $\sqrt{200}$ \sqrt	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT Eee 88–94 GeV	₀ /Γ — ₁ /Γ	NODE=S044R32 NODE=S044R32
The value is for the value is for the value $<7 \times 10^{-5}$ $\Gamma(\rho^{\pm} W^{\mp})/\Gamma_{\text{total}}$	<u>CL%_</u> 95	DOCUMENT ID	92	TECN ALEP	COMMENT Eee 88–94 GeV		NODE=S044R32
The value is for the v	95 :he sum o	DOCUMENT ID DECAMP	92 indica	TECN ALEP ted. TECN	$\frac{\textit{COMMENT}}{\textit{E}_{CM}^{ee}} = 88-94 \; GeV$		NODE=\$044R32 NODE=\$044R32 NODE=\$044R33
The value is for to the value is for to the value is for to the value is for the value is	95 :he sum o	DOCUMENT ID DECAMP	92 indica	TECN ALEP ted. TECN	$\frac{\textit{COMMENT}}{\textit{E}_{cm}^\textit{ee}} = 88-94 \; \text{GeV}$		NODE=S044R32 NODE=S044R32 NODE=S044R33 NODE=S044R33
The value is for the v	2L% 95 She sum o CL% 95	DOCUMENT ID DECAMP f the charge states DOCUMENT ID	92 indica	TECN ALEP ted. TECN	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$		NODE=S044R32 NODE=S044R32 NODE=S044R33 NODE=S044R33
The value is for the v	200 <u>CL%</u> 95 She sum o <u>CL%</u> 95	DOCUMENT ID DECAMP f the charge states DOCUMENT ID	92 indica	TECN ALEP ted. TECN	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$	₁₁ /Γ	NODE=S044R32 NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33
The value is for to the value is for the value is	20.00	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DOCUMENT ID	92 indica	TECN ALEP tted. TECN ALEP	$\frac{COMMENT}{E_{ m cm}^{ee}} = 88-94 \; { m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}} = 88-94 \; { m GeV}$ Γ_2	₁₁ /Γ	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33
The value is for the value $<8.3 \times 10^{-5}$ $\Gamma(J/\psi(1S)X)/\Gamma_{total}$ $VALUE (units 10^{-3})$ $3.51^{+0.23}_{-0.25} \text{ OUR AVER}$	20.00	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DOCUMENT ID	92 indica 92	ted. TECN ALEP ted. TECN ALEP	$\frac{COMMENT}{E_{ m cm}^{ee}} = 88-94 \; { m GeV}$ $\frac{COMMENT}{E_{ m cm}^{ee}} = 88-94 \; { m GeV}$ Γ_2	₁₁ /Γ	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33
The value is for the value (8.3 \times 10 ⁻⁵ $\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3})$ 3.51 $^{+0.23}_{-0.25}$ OUR AVER 3.21 $^{+0.19}_{-0.28}$	2L% 95 che sum o CL% 95 sl EVTS EAGE Er	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DECAMP DOCUMENT ID ror includes scale fa	92 indica 92 actor c	ted. TECN ALEP ted. TECN ALEP TECN 1.1. L3	$COMMENT$ $E_{CM}^{ee} = 88-94 \text{ GeV}$ $COMMENT$ $E_{CM}^{ee} = 88-94 \text{ GeV}$ $COMMENT$ $COMMENT$ $COMMENT$ $COMMENT$ $COMMENT$ $COMMENT$	₁₁ /Γ	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33
The value is for the value $<8.3 \times 10^{-5}$ $\Gamma(J/\psi(1S)X)/\Gamma_{total}$ $VALUE (units 10^{-3})$ $3.51^{+0.23}_{-0.25} \text{ OUR AVER}$	20.00	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DECAMP DOCUMENT ID ror includes scale fa	92 indica 92 actor of 99F 96B	ted. TECN ALEP ted. TECN ALEP TECN of 1.1. L3 OPAL	$rac{COMMENT}{E_{ m cm}^{ee}} = 88-94 \; { m GeV}$ $rac{COMMENT}{E_{ m cm}^{ee}} = 88-94 \; { m GeV}$ $rac{COMMENT}{COMMENT}$	₁₁ /Γ	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33
The value is for the value (8.3 \times 10 ⁻⁵ $\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3})$ 3.51 + 0.23 OUR AVER (1.19) 3.21 ± 0.21 + 0.19 3.21 ± 0.21 + 0.19 3.21 ± 0.30 3.73 ± 0.39 ± 0.36 ACCIARRI 99F com	$\frac{CL\%}{95}$ the sum of $\frac{CL\%}{95}$ shalf $\frac{EVTS}{553}$ the $\frac{EVTS}{153}$ bine $\mu^+\mu^-$	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO Includes scale far 1 ACCIARRI 2 ALEXANDER 3 ABREU $T = T = T = T = T = T = T = T = T = T =$	92 indica 92 octor c 99F 96B 94P	ted. TECN ALEP TECN ALEP TECN of 1.1. L3 OPAL DLPH ecay chai	$\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = 88-94 \text{ GeV}$ nnels. The branching	-1/Γ -2/Γ	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33
The value is for the value (units 10^{-5}) 7. ($J/\psi(1S)X$)/ Γ_{total} 7. ($J/\psi(1S)X$)/ Γ_{total} 8. ($J/\psi(1S)X$)/ Γ_{total} 8. ($J/\psi(1S)X$)/ Γ_{total} 9. ($J/\psi(1S)X$) 1. ($J/\psi(1S)X$)	the sum of $\frac{CL\%}{95}$ She sum of $\frac{CL\%}{95}$ Shale $\frac{EVTS}{553}$ Shift $\frac{EVTS}{153}$ bine $\mu^+\mu^-$) production	$\frac{DOCUMENT\ ID}{DECAMP}$ f the charge states $\frac{DOCUMENT\ ID}{DECAMP}$ DECAMP $\frac{DOCUMENT\ ID}{ACCIARRI}$ or includes scale for $\frac{1}{4} \text{ ACCIARRI}$ $\frac{2}{4} \text{ ALEXANDER}$ $\frac{2}{3} \text{ ABREU}$ and $e^+e^-J/\psi(0)$ on is measured to be	92 92 92 92 95 96 96 94 91 95 96 96 96 96 96 96 96 96 96	ted. TECN ALEP TECN ALEP of 1.1. L3 OPAL DLPH ecay chart ± 0.6 ±	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{E_{cm}^{ee}}{E_{cm}^{ee}} = 88-94 \text{ GeV}$	21/Γ 22/Γ ratio 0-4.	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23
The value is for the value (value) $<8.3 \times 10^{-5}$ $\Gamma(J/\psi(1S)X)/\Gamma_{total}$ $VALUE \text{ (units } 10^{-3})$ $3.51^{+0.23}_{-0.25} \text{ OUR AVER}$ $3.21^{+0.23}_{-0.28} \text{ OUR AVER}$ $3.21^{+0.19}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.73^{+0.39}_{-0.36}$ $^{+0.19}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.9^{+0.3}_{-0.28}$ 3.9^{+0	the sum of $\frac{CL\%}{95}$ She sum of $\frac{CL\%}{95}$ Shage Errors 553 511 153 bine $\mu^+\mu^-$) production identify J	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO TO Includes scale for 1 ACCIARRI 2 ALEXANDER 3 ABREU $^-$ and $e^+e^-J/\psi($ on is measured to b $^1/\psi(1S)$ from the decay and $^1/\psi(1S)$	92 92 92 95 97 97 98 99 98 99 99 99 99 90 90 90	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ of 1.1. $L3$ $OPAL$ $DLPH$ $2 cay chait \pm 0.6 \pm 0.00 nto lepting terms and the second continuous c$	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{E_{cm}^{ee}}{E_{cm}^{ee}} = 88-94 \text{ GeV}$	21/Γ 22/Γ ratio 0-4.	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23
The value is for the value (units 10^{-5}) 3.51 $^{+0.23}_{-0.25}$ OUR AVER 3.21 $^{+0.23}_{-0.28}$ OUR AVER 3.21 $^{+0.19}_{-0.28}$ OUR AVER	the sum of $\frac{CL\%}{95}$ She sum of $\frac{CL\%}{95}$ Shage Error 553 Shine $\mu^+\mu^-$ Direction in production identify J_0 is due to	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO TO Includes scale for 1 ACCIARRI 2 ALEXANDER 3 ABREU $^-$ and $e^+e^-J/\psi($ on is measured to b $^1/\psi(1S)$ from the deprompt $J/\psi(1S)$	92 92 92 92 95 968 94P 968 94P 968 969 969 969 969 969 969 96	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ of 1.1. $L3$ $OPAL$ $DLPH$ $tecay chain \pm 0.6 \pm 0.00 into leptition (AL$	$\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 88-94 \text{ GeV}$ $\frac{E_{cm}^{ee}}{E_{cm}^{ee}} = 88-94 \text{ GeV}$	11/Γ 22/Γ ratio 0-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D
The value is for the value (No.25) $(J/\psi(1S)X)/\Gamma_{total}$ $(J/\psi(1S)X)/\Gamma_{to$	the sum of	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO TO Includes scale for $a = 1$ ACCIARRI ACCIARRI ACCIARRI ACCIARRI ABREU A and $a + a = 1/\psi(1$ on is measured to b $a = 1/\psi(1$ on the deprompt $a = 1/\psi(1$ channels and taking a	92 92 92 92 95 96 96 94 94 95 96 96 96 96 96 96 96 96 96	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ of 1.1. $L3$ $OPAL$ $DLPH$ ecay charter $\pm 0.6 \pm 0.00$ nto leptition (AL or account)	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$	11/Γ 22/Γ ratio 0-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23
The value is for the value (a.3 × 10 ⁻⁵) $\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3})$ $3.51^{+0.23}_{-0.25} \text{ OUR AVER}$ $3.21^{+0.23}_{-0.25} \text{ OUR AVER}$ $3.21^{+0.19}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.9^{+0.2}_{-0.28}$ $3.73^{+0.23}_{-0.28} \text{ OUR AVER}$ $4.21^{+0.19}_{-0.28}$ $3.73^{+0.23}_{-0.28} \text{ OUR AVER}$ $4.21^{+0.19}_{-0.28}$ $4.21^{+0.19}_{-0.28} \text{ OUR AVER}$ 4.21^{+0	the sum of	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO TO Includes scale for $a = 1$ ACCIARRI ACCIARRI ACCIARRI ACCIARRI ABREU A and $a + a = 1/\psi(1$ on is measured to b $a = 1/\psi(1$ on the deprompt $a = 1/\psi(1$ channels and taking a	92 92 92 92 95 96 96 94 94 95 96 96 96 96 96 96 96 96 96	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ of 1.1. $L3$ $OPAL$ $DLPH$ ecay charter $\pm 0.6 \pm 0.00$ nto leptition (AL or account)	$\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = $	11/Γ 2/Γ ratio 1-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D
The value is for the v	the sum of	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO TO Includes scale for a ACCIARRI ACCIARRI ACCIARRI ABREU ABR	92 92 92 92 95 96 96 94 94 95 96 96 96 96 96 96 96 96 96	ted. TECN ALEP TECN ALEP TECN of 1.1. L3 OPAL DLPH decay chair $\pm 0.6 \pm$ into leptition (AL o accour	$\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = $	11/Γ 22/Γ ratio 0-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D NODE=S044R23;LINKAGE=C
The value is for the value (units 10^{-5}) 7. (J/ ψ (1.5) X)/ Γ total value (units 10^{-3}) 8. (3.21 ± 0.21 + 0.19	the sum of	DOCUMENT ID DECAMP If the charge states DOCUMENT ID DECAMP DOCUMENT ID TO TO Includes scale for $a = 1$ ACCIARRI ACCIARRI ACCIARRI ACCIARRI ABREU A and $a + a = 1/\psi(1$ on is measured to b $a = 1/\psi(1$ on the deprompt $a = 1/\psi(1$ channels and taking a	92 92 92 92 95 96 96 94 94 95 96 96 96 96 96 96 96 96 96	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ of 1.1. $L3$ $OPAL$ $DLPH$ ecay charter $\pm 0.6 \pm 0.00$ nto leptition (AL or account)	$\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = $	11/Γ 2/Γ ratio 1-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D NODE=S044R23;LINKAGE=C
The value is for the value (0.3 \text{\$\sigma}\$\$\sin	the sum of	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DECAMP DOCUMENT ID DECAMP TO includes scale far 1 ACCIARRI ACCIAR	92 92 92 95 968 94P 1.5) de e (2.1 e coays i i orroducing int e to p	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ $\frac{TECN}{OPAL}$ of 1.1. $\frac{1}{1}$	$\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = $	11/Γ 2/Γ ratio 1-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D NODE=S044R23;LINKAGE=C
The value is for the value (a.3 × 10 ⁻⁵) $\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3})$ $3.51^{+0.23}_{-0.25} \text{ OUR AVER}$ $3.21^{+0.19}_{-0.28}$ $3.9 \pm 0.2 \pm 0.3$ $3.73 \pm 0.39 \pm 0.36$ $^{1}_{ACCIARRI 99F} \text{ common for prompt } J/\psi(1S)$ $^{2}_{ALEXANDER 96B} this branching ratio of the value of value of the value of value of the value of value of the val$	the sum of	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DECAMP DOCUMENT ID DECAMP TO Includes scale for a ACCIARRI ACCIARRI ACCIARRI ACCIARRI ABREU A and $e^+e^-J/\psi(15)$ from the deprompt $J/\psi(15)$ f	92 92 92 92 95 96B 94P 1.S) de e (2.1 e to principle of the princi	ted. $\frac{TECN}{ALEP}$ ted. $\frac{TECN}{ALEP}$ $\frac{TECN}{OPAL}$ of 1.1. $\frac{1}{1}$	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$	11/Γ 2/Γ ratio 1-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D NODE=S044R23;LINKAGE=C
The value is for the value (a.3 × 10 ⁻⁵) $\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3})$ 3.51 + 0.23 OUR AVER 3.21 ± 0.21 + 0.19 3.21 ± 0.21 + 0.19 3.21 ± 0.21 + 0.19 3.21 ± 0.30 3.33 ± 0.39 ± 0.36 1 ACCIARRI 99F composition for prompt $J/\psi(1S)$ 2 ALEXANDER 96B this branching ration 3 Combining $\mu^+\mu^-$ errors. $(7.7 + 6.3) \%$ $\Gamma(\psi(2S)X)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-3})$ 1.60 ± 0.29 OUR AVER	the sum of	DOCUMENT ID DECAMP f the charge states DOCUMENT ID DECAMP DOCUMENT ID DECAMP TO Includes scale for a ACCIARRI ACCIARRI ACCIARRI ACCIARRI ABREU A and $e^+e^-J/\psi(15)$ from the deprompt $J/\psi(15)$ f	92 92 92 95 96 97 97 96 97 96 97 96 97	ted. TECN ALEP TECN ALEP of 1.1. L3 OPAL DLPH ecay chai ± 0.6 ± into leptition (ALion account or	$\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 88-94 \; {\rm GeV}$ $\frac{E_{\rm cm}^{ee}}{E_{\rm cm}^{ee}} = $	11/Γ 2/Γ ratio 1-4. % of	NODE=S044R32 NODE=S044R33 NODE=S044R33 NODE=S044R33 NODE=S044R23 NODE=S044R23 NODE=S044R23;LINKAGE=F NODE=S044R23;LINKAGE=D NODE=S044R23;LINKAGE=C

1 ACCIARRI 97J me $= \mu$, e).	easure this	branching ratio via	the d	lecay cha	annel $\psi(2S) \rightarrow \ell^+\ell^-$ (ℓ	NODE=S044R60;LINKAGE=C
			atio v	ia the d	decay channel $\psi(2S) ightharpoonup$	NODE=S044R60;LINKAGE=BB
			cay ch	annel ψ ($(2S) \rightarrow J/\psi \pi^+ \pi^-$, with	NODE=S044R60;LINKAGE=A
$\Gamma(\chi_{c1}(1P)X)/\Gamma_{tot}$	tal				Γ ₂₄ /Γ	NODE=S044R42
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=\$044R42
2.9±0.7 OUR AVERA 2.7±0.6±0.5	AGE 33	¹ ACCIARRI	971	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV	
$5.0 \pm 2.1 + 1.5$ -0.9	6.4	² ABREU		_	$E_{\rm cm}^{\rm ee} = 88 - 94 \text{ GeV}$	
1 ACCIARRI 97J me with $J/\psi ightarrow \ell^+ \ell$ is fitted with two	ℓ^- ($\ell=\mu$, gaussian sh	e). The $\mathit{M}(\ell^+\ell^-)$ apes for χ_{c1} and	γ)–M χ_{c2}	$(\ell^+\ell^-)$	mannel $\chi_{c1} \rightarrow J/\psi + \gamma$, mass difference spectrum $J/\psi + \gamma$, with $J/\psi \rightarrow$	NODE=S044R42;LINKAGE=C NODE=S044R42;LINKAGE=A
$\mu^{+}\mu^{-}$.						
$\Gamma(\chi_{c2}(1P)X)/\Gamma_{tot}$					Γ ₂₅ /Γ	NODE=\$044R65
VALUE <3.2 × 10^{−3}	<u>CL%</u>	DOCUMENT ID 1 ACCIARRI		L3	COMMENT Eee = 88-94 GeV	NODE=S044R65
• • • • • • • • • • • • • • • • • • • •					$J/\psi + \gamma$, with $J/\psi ightarrow$	
$\ell^+\ell^-$ ($\ell=\mu$, e) two gaussian shap	. The $M(\ell)$	$^+\ell^-\gamma$)- $M(\ell^+\ell^-)$	mass	difference	ce spectrum is fitted with	NODE=S044R65;LINKAGE=A
$\Gamma(\Upsilon(1S) \times + \Upsilon(2S))$	5) X + 7 (3	3 <i>S</i>) Χ)/Γ _{total}		-	$\Gamma = (\Gamma_{27} + \Gamma_{28} + \Gamma_{29})/\Gamma$	NODE=\$044R62
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID			COMMENT	NODE=S044R62
	into e^+e^-	he Υ (which refers and $\mu^+\mu^-$. The	to any	of the t	Ecm= 88–94 GeV hree lowest bound states) or includes an uncertainty	NODE=S044R62;LINKAGE=A
$\Gamma(\Upsilon(1S)X)/\Gamma_{\text{total}}$					Γ ₂₇ /Γ	
VALUE VALUE	<u>CL%_</u>	DOCUMENT ID		TECN		NODE=S044R66 NODE=S044R66
$<4.4 \times 10^{-5}$	95	¹ ACCIARRI	99F	L3	E ^{ee} _{cm} = 88–94 GeV	
¹ ACCIARRI 99F se	arch for $\varUpsilon($	1S) through its de	ecay in	to $\ell^+\ell^-$	$(\ell=e \text{ or } \mu).$	NODE=S044R66;LINKAGE=B
$\Gamma(\Upsilon(2S)X)/\Gamma_{\text{total}}$					Γ ₂₈ /Γ	NODE=S044R67
VALUE	<u>CL%</u>	_			COMMENT	NODE=S044R67
<13.9 × 10 ⁻⁵	95	¹ ACCIARRI	97 R		E ^{ee} _{cm} = 88–94 GeV	
¹ ACCIARRI 97R se	arch for $\Upsilon($	(2 <i>S</i>) through its de	ecay in	to $\ell^+\ell^-$	$(\ell={\sf e}\ {\sf or}\ \mu).$	NODE=S044R67;LINKAGE=A
$\Gamma(\Upsilon(3S)X)/\Gamma_{\text{total}}$					Γ ₂₉ /Γ	NODE=S044R68
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT	NODE=\$044R68
<9.4 × 10 ⁻⁵	95	¹ ACCIARRI	97 R		E ^{ee} _{cm} = 88–94 GeV	
¹ ACCIARRI 97R se	arch for $\Upsilon($	(3 <i>S</i>) through its de	ecay in	to $\ell^+\ell^-$	$(\ell=e \text{ or } \mu).$	NODE=S044R68;LINKAGE=A
$\Gamma((D^0/\overline{D}^0)X)/\Gamma($	(hadrons)				Γ_{30}/Γ_{7}	NODE=S044R43
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT	NODE=S044R43
$0.296\pm0.019\pm0.021$	369	¹ ABREU			E ^{ee} _{cm} = 88–94 GeV	
1 The $(D^{0}/\overline{D}{}^{0})$ st corrected result (s	ates in AB see the erra	REU 931 are detectum of ABREU 93	ted by	the K_1	π decay mode. This is a	NODE=S044R43;LINKAGE=A
$\Gamma(D^{\pm}X)/\Gamma(\text{hadron})$	ns)				Γ ₃₁ /Γ ₇	NODE=S044R44
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT	NODE=S044R44
0.174±0.016±0.018	539	¹ ABREU			E ^{ee} _{cm} = 88–94 GeV	
1 The D^\pm states in result (see the error			he $K\pi$	π decay	mode. This is a corrected	NODE=S044R44;LINKAGE=A

$\Gamma(D^*(2010)^{\pm}X)/\Gamma(hadrons)$ Γ_{32}/Γ_7	NODE=S044R24
The value is for the sum of the charge states indicated.	NODE=S044R24
<u>VALUEEVTSDOCUMENT IDTECNCOMMENT</u>	NODE=S044R24
0.163±0.019 OUR AVERAGE Error includes scale factor of 1.3.	
$0.155 \pm 0.010 \pm 0.013$ 358 $\frac{1}{3}$ ABREU 931 DLPH $E_{\text{cm}}^{\text{ee}} = 88-94$ GeV	
0.21 \pm 0.04 362 ² DECAMP 91J ALEP $E_{\text{cm}}^{ee} = 88-94 \text{ GeV}$	
$^1D^*(2010)^{\pm}$ in ABREU 93I are reconstructed from $D^0\pi^{\pm}$, with $D^0\to K^-\pi^+$. The new CLEO II measurement of B($D^{*\pm}\to D^0\pi^{\pm}$) = (68.1 \pm 1.6) % is used. This is a corrected result (see the erratum of ABREU 93I).	NODE=S044R24;LINKAGE=B
² DECAMP 91J report B($D^*(2010)^+ \rightarrow D^0\pi^+$) B($D^0 \rightarrow K^-\pi^+$) $\Gamma(D^*(2010)^\pm X)$ / $\Gamma(\text{hadrons}) = (5.11 \pm 0.34) \times 10^{-3}$. They obtained the above number assuming B($D^0 \rightarrow K^-\pi^+$) = (3.62 ± 0.34 ± 0.44)% and B($D^*(2010)^+ \rightarrow D^0\pi^+$) = (55 ± 4)%. We have rescaled their original result of 0.26 ± 0.05 taking into account the new CLEO II branching ratio B($D^*(2010)^+ \rightarrow D^0\pi^+$) = (68.1 ± 1.6)%.	NODE=S044R24;LINKAGE=A
$\Gamma(D_{s1}(2536)^{\pm}X)/\Gamma(\text{hadrons})$ Γ_{33}/Γ_7	NODE=S044R70
$D_{m{s}1}(2536)^{\pm}$ is an expected orbitally-excited state of the $D_{m{s}}$ meson.	NODE=S044R70
VALUE (%)EVTSDOCUMENT IDTECNCOMMENT	NODE=S044R70
0.52±0.09±0.06 92 ¹ HEISTER 02B ALEP $E_{\text{cm}}^{\text{ee}} = 88-94 \text{ GeV}$	
1 HEISTER 02B reconstruct this meson in the decay modes $D_{s1}(2536)^\pm \to D^{*\pm} K^0$ and $D_{s1}(2536)^\pm \to D^{*0} K^\pm$. The quoted branching ratio assumes that the decay width of the $D_{s1}(2536)$ is saturated by the two measured decay modes.	NODE=S044R70;LINKAGE=A
$\Gamma(D_{sJ}(2573)^{\pm}X)/\Gamma(\text{hadrons})$ Γ_{34}/Γ_{7}	NODE=S044R71
$D_{s,I}(2573)^{\pm}$ is an expected orbitally-excited state of the D_s meson.	
VALUE (%)EVTS DOCUMENT IDTECN COMMENT	NODE=S044R71 NODE=S044R71
$0.83 \pm 0.29 ^{+0.07}_{-0.13}$ 64 ¹ HEISTER 02B ALEP $E_{\rm cm}^{ee} = 88-94$ GeV	
1 HEISTER 02B reconstruct this meson in the decay mode $D_{s2}^*(2573)^\pm \to D^0 K^\pm$. The quoted branching ratio assumes that the detected decay mode represents 45% of the full decay width.	NODE=S044R71;LINKAGE=A
$\Gamma(D^{*}/(2629)^{\pm}X)/\Gamma(\text{hadrons})$ Γ_{35}/Γ_{7}	NODE=S044R69
$D^{*\prime}(2629)^{\pm}$ is a predicted radial excitation of the $D^{*}(2010)^{\pm}$ meson.	NODE=\$044R69
<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=5044R69
searched for 1 ABBIENDI 01N OPAL $E_{cm}^{ee} = 88-94$ GeV	
¹ ABBIENDI 01N searched for the decay mode $D^{*\prime}(2629)^{\pm} \rightarrow D^{*\pm}\pi^{+}\pi^{-}$ with $D^{*+} \rightarrow D^{0}\pi^{+}$, and $D^{0} \rightarrow K^{-}\pi^{+}$. They quote a 95% CL limit for $Z \rightarrow D^{*\prime}(2629)^{\pm} \times B(D^{*\prime}(2629)^{+} \rightarrow D^{*+}\pi^{+}\pi^{-}) < 3.1 \times 10^{-3}$.	NODE=S044R69;LINKAGE=A
$\Gamma(B^*X)/[\Gamma(BX)+\Gamma(B^*X)]$ $\Gamma_{37}/(\Gamma_{36}+\Gamma_{37})$	
	NODE=S044R61
As the experiments assume different values of the \emph{b} -baryon contribution, our average should be taken with caution.	NODE=S044R61
VALUEEVTS DOCUMENT IDTECNCOMMENT	NODE=S044R61
0.75 ±0.04 OUR AVERAGE	
$0.760 \pm 0.036 \pm 0.083$	
$0.771 \pm 0.026 \pm 0.070$ 2 BUSKULIC 96D ALEP $E_{\text{cm}}^{\text{ee}} = 88-94 \text{ GeV}$	
$0.72 \pm 0.03 \pm 0.06$ 3 ABREU 95R DLPH $E_{\text{cm}}^{\text{ee}} = 88-94 \text{ GeV}$	
$0.76 \pm 0.08 \pm 0.06$ 1378 ⁴ ACCIARRI 95B L3 $E_{\rm cm}^{ee} = 88-94$ GeV	
1 ACKERSTAFF 97M use an inclusive B reconstruction method and assume a (13.2 \pm 4.1)% b -baryon contribution. The value refers to a b -flavored meson mixture of B_u , B_d , and B_s .	NODE=S044R61;LINKAGE=D
2 BUSKULIC 96D use an inclusive reconstruction of B hadrons and assume a (12.2 \pm 4.3)% $b\text{-baryon}$ contribution. The value refers to a $b\text{-flavored}$ mixture of B_u , B_d , and B_s .	NODE=S044R61;LINKAGE=C
3 ABREU 95R use an inclusive B -reconstruction method and assume a $(10\pm4)\%$ b -baryon contribution. The value refers to a b -flavored meson mixture of B_u , B_d , and B_s .	NODE=S044R61;LINKAGE=B
4 ACCIARRI 95B assume a 9.4% $b\text{-}\text{baryon}$ contribution. The value refers to a $b\text{-}\text{flavored}$ mixture of B_u , B_d , and B_s .	NODE=S044R61;LINKAGE=A

$\Gamma(B^+X)/\Gamma(hadrons)$

 Γ_{38}/Γ_{7}

"OUR EVALUATION" is obtained using our current values for f $(\overline{b}
ightarrow~B^+)$ and R $_b$ $=\Gamma(b\,\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(B^+\;\mathsf{X})/\Gamma(\text{hadrons})=\mathsf{R}_b^-\;\mathsf{X}\;\mathsf{f}(\overline{b}\to\;B^+)$. The decay fraction $f(\overline{b} \to B^+)$ was provided by the Heavy Flavor Averaging Group (HFAG,

 $http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2009/\#FRACZ).\\$ DOCUMENT ID TECN COMMENT

NODE=S044B+X → UNCHECKED ←

NODE=S044B+X

NODE=S044B+X

 0.0869 ± 0.0019 OUR EVALUATION 0.0887 ± 0.0030

¹ ABDALLAH 03K DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$

 $^{
m 1}$ ABDALLAH 03K measure the production fraction of B^+ mesons in hadronic Z decays $f(B^+) = (40.99 \pm 0.82 \pm 1.11)\%$. The value quoted here is obtained multiplying this production fraction by our value of $R_b = \Gamma(\overline{b}\,b)/\Gamma(\text{hadrons})$.

NODE=S044B+X;LINKAGE=AB

$\Gamma(B_{\bullet}^{0}X)/\Gamma(\text{hadrons})$

 Γ_{39}/Γ_{7}

 $=\Gamma(b\,\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(B_s^0)/\Gamma(\text{hadrons})=R_b\times f(\overline{b}\to B_s^0)$. The decay fraction $f(\overline{b} \to B_c^0)$ was provided by the Heavy Flavor Averaging Group (HFAG, http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2009/#FRACZ).

NODE=S044R49

NODE=S044R49

→ UNCHECKED ←

NODE=S044R49

VALUE DOCUMENT ID TECN COMMENT

0.0227±0.0019 OUR EVALUATION

seen seen

NODE=S044R49:LINKAGE=A

 1 ABREU 92M reported value is $\Gamma(B_s^0\mathsf{X})*\mathsf{B}(B_s^0\to D_s\mu\nu_\mu\mathsf{X})*\mathsf{B}(D_s\to\phi\pi)/\Gamma(\mathsf{hadrons})$ $= (18 \pm 8) \times 10^{-5}$.

NODE=S044R49;LINKAGE=C

 2 ACTON 92N find evidence for B^0_s production using D_s - ℓ correlations, with $D^+_s o \phi \pi^+$ and $K^*(892)K^+$. Assuming R_b from the Standard Model and averaging over the e and μ channels, authors measure the product branching fraction to be $f(\overline{b} \to B_s^0) \times B(B_s^0 \to B_s^0)$ $D_s^- \ell^+ \nu_{\ell} X) \times B(D_s^- \to \phi \pi^-) = (3.9 \pm 1.1 \pm 0.8) \times 10^{-4}.$

NODE=S044R49;LINKAGE=B

 3 BUSKULIC 92E find evidence for B_s^0 production using D_s - ℓ correlations, with D_s^+ o $\phi\pi^+$ and $K^*(892)K^+$. Using B($D_s^+\to\phi\pi^+)=(2.7\pm0.7)\%$ and summing up the e and μ channels, the weighted average product branching fraction is measured to be B($\overline{b}\to B_s^0$)×B($B_s^0\to D_s^-\ell^+\nu_\ell$ X) = 0.040 \pm 0.011 $^{+\,0.010}_{-\,0.012}$.

 $\Gamma(B_c^+X)/\Gamma(hadrons)$

VALUE	DOCUMENT ID		TECN	COMMENT
searched for	¹ ACKERSTAFF	980	OPAL	E ^{ee} _{cm} = 88–94 GeV
searched for	² ABREU	97E	DLPH	Eee = 88-94 GeV
searched for	³ BARATE	97H	ALEP	$E_{\mathrm{cm}}^{\mathrm{ee}} = 88-94 \; \mathrm{GeV}$

NODE=S044BCC NODE=S044BCC

 1 ACKERSTAFF 980 searched for the decay modes $B_c o J/\psi \pi^+$, $J/\psi a_1^+$, and $J/\psi\,\ell^+\,\nu_\ell$, with $J/\psi\to\ell^+\ell^-$, $\ell=e,\mu$. The number of candidates (background) for the three decay modes is 2 (0.63 \pm 0.2), 0 (1.10 \pm 0.22), and 1 (0.82 \pm 0.19) respectively. Interpreting the $2B_c \rightarrow J/\psi \pi^+$ candidates as signal, they report $\Gamma(B_c^+ X) \times B(B_c \rightarrow B_c^+ X) \times B(B_c$ $J/\psi \pi^+)/\Gamma(\text{hadrons}) = (3.8 + 5.0 \pm 0.5) \times 10^{-5}$. Interpreted as background, the 90% CL bounds are $\Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \, a_1^+)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c^+ \to J/\psi \ell^+ \nu_\ell)/\Gamma({\rm hadrons})$

NODE=S044BCC;LINKAGE=A

² ABREU 97E searched for the decay modes $B_c \to J/\psi \pi^+$, $J/\psi \ell^+ \nu_\ell$, and $J/\psi (3\pi)^+$, with $J/\psi \to \ell^+\ell^-$, $\ell=e,\mu$. The number of candidates (background) for the three decay modes is 1 (1.7), 0 (0.3), and 1 (2.3) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c \rightarrow J/\psi\pi^+)/\Gamma(hadrons) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c^+ X) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c^+ X) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ X)*B(B_c^+ X) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+$ $\textit{J/\psi}\,\ell\nu_\ell)/\Gamma(\text{hadrons}) < (5.8-5.0)\times 10^{-5},\; \Gamma(B_c^+\,\text{X})*\text{B}(B_c \rightarrow \textit{J/\psi}\,(3\pi)^+)/\Gamma(\text{hadrons})$ $< 1.75 \times 10^{-4}$, where the ranges are due to the predicted B_C lifetime (0.4–1.4) ps.

NODE=S044BCC;LINKAGE=B

 3 BARATE 97H searched for the decay modes $B_c
ightarrow J/\psi \pi^+$ and $J/\psi \ell^+
u_\ell$ with $J/\psi \to \ell^+\ell^-$, $\ell=e,\mu$. The number of candidates (background) for the two decay modes is 0 (0.44) and 2 (0.81) respectively. They report the following 90% CL limits: $\Gamma(B_c^+X)*B(B_c \to J/\psi\pi^+)/\Gamma(\text{hadrons}) < 3.6 \times 10^{-5}$ and $\Gamma(B_c^+X)*B(B_c \to J/\psi\pi^+)/\Gamma(\text{hadrons}) < 3.6 \times 10^{-5}$ $J/\psi \ell^+ \nu_{\ell})/\Gamma(\text{hadrons}) < 5.2 \times 10^{-5}$.

NODE=S044BCC;LINKAGE=C

$\Gamma(\Lambda_c^+ X)/\Gamma(hadrons)$			Γ_{41}/Γ_{7}	NODE=S044LCX
VALUE	DOCUMENT ID TECN	COMMENT		NODE=S044LCX
0.022±0.005 OUR AVERAGE 0.024±0.005±0.006	¹ ALEXANDER 96R OPAL	Fee _ 88_0/	l GeV	
$0.021 \pm 0.003 \pm 0.005$		$E_{\rm cm}^{ee} = 88-94$		
$0.023 \pm 0.010)\%$ in hadronic	$R_b imes { m f}(b o \Lambda_c^+ X) imes { m B}(\Lambda_c^+ - Z) imes { m decays};$ the value quoted here (5.0 \pm 1.3)%. The first error is the value at the branch decay to	is obtained usin	ng our best	NODE=S044LCX;LINKAGE=AL
2 BUSKULIC 96Y obtain the $_{ m I}$	production fraction of Λ_c^+ baryon 14 ± 0.006 using B($\Lambda_c^+ o ho K^-$	ons in hadronic	Z decays	NODE=S044LCX;LINKAGE=BU
$h_{\text{ave}} = \frac{1}{C} \times \frac$	value B($\Lambda_c^+ \rightarrow pK^-\pi^+$) = (5.0)	// / / (4.4 ± 1 + 1 3)% obtain	oing $f(h \rightarrow$	
$\Lambda_c^+ X) = 0.097 \pm 0.013 \pm 0$ and the second error is the s	0.025 where the first error is the systematic error due to the brancained multiplying this productio	ir total experim ching fraction u	ent's error ncertainty.	
$\Gamma(\Xi_c^0 X)/\Gamma(\text{hadrons})$			Γ_{42}/Γ_{7}	NODE=S044XIC
VALUE		COMMENT		NODE=S044XIC
• • • We do not use the following				
seen	¹ ABDALLAH 05C DLPH			
¹ ABDALLAH 05C searched fo	or the charmed strange baryon	Ξ_c^0 in the decay	ay channel	NODE=S044XIC;LINKAGE=AB
). The production rate is measu	ared to be $f_{\equiv_c^0}$	$\langle B(\Xi_c^0 \rightarrow$	
$\Xi^-\pi^+$) = (4.7 ± 1.4 ± 1.1)	$) imes 10^{-4}$ per hadronic Z decay.			
$\Gamma(\Xi_b X)/\Gamma(hadrons)$			Γ_{43}/Γ_{7}	NODE=S044XIB
. , , , ,	ion for the strange <i>b</i> -baryon stat	tes Ξ_b^- and Ξ_b^0		NODE=S044XIB
VALUE		COMMENT		NODE=\$044XIB
• • We do not use the following	ng data for averages, fits, limits,			
seen		$E_{\rm cm}^{ee} = 88-94$ $E_{\rm cm}^{ee} = 88-94$		
seen seen		$E_{\rm cm}^{\rm ee} = 88-94$		
	the beauty strange baryon Ξ_b in			NODE COMMUNICACE AD
	$-\overline{ u}_{\ell}X$. Evidence for the $\overline{\Xi}_{b}$ pro			NODE=S044XIB;LINKAGE=AB
observation of $arxii^+$ production	accompanied by a lepton of the s	same sign. From	the excess	
	compared to "wrong-sign" pairs $\frac{1}{2}$			
lepton species, averaged over	$(3.0) \times B(\Xi_b \rightarrow \Xi^- \ell^- X) = (3.0)$ electrons and muons.	$0 \pm 1.0 \pm 0.3) \times$. 10 · per	
2 BUSKULIC 96T investigate \equiv sign" pairs $\equiv \mp \ell \mp$ compared as evidence for \equiv_b semileptor	E-lepton correlations and find a sit to "wrong–sign" pairs $\Xi^{\mp}\ell^{\pm}$. In decay. The measured product	ignificant excess This excess is t branching ratio	of "right- interpreted o is $B(b \to$	NODE=S044XIB;LINKAGE=BU
Ξ_b) \times B($\Xi_b \rightarrow X_c X \ell^- \overline{\nu}_\ell$	$(S_c) imes B(X_c o \Xi^- X') = (5.4 \pm 0.00)$ electrons and muons, with X_c a	\pm 1.1 \pm 0.8) $ imes$	10 ⁻⁴ per	
	ss of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ o			NODE=S044XIB;LINKAGE=AR
	ess is interpreted as evidence for			, ,
	$E^-\ell^-\overline{ u}_\ell X$. They find that the pays is less than $5 imes 10^{-4}$ and the			
for less than 10% of these eve	nts. The Ξ_b production rate is the	nen measured to	be B($b \rightarrow$	
Ξ_b) \times B($\Xi_b \rightarrow \Xi^- \ell^- X$) over electrons and muons.	$= (5.9 \pm 2.1 \pm 1.0) imes 10^{-4} \text{ pe}$	er lepton species	s, averaged	
$\Gamma(b\text{-baryon X})/\Gamma(\text{hadrons})$			Γ_{44}/Γ_{7}	
	btained using our current values	for f(b > b b		NODE=S044BBR
$R_h = \Gamma(b\overline{b})/\Gamma(hadrons).$	We calculate $\Gamma(b\text{-baryon X})/\Gamma(b)$	$(hadrons) = R_b$	\times f(b \rightarrow	NODE=S044BBR
	tion $f(b \rightarrow b\text{-baryon})$ was proven that $f(b \rightarrow b\text{-baryon})$			
VALUE VALUE	http://www.slac.stanford.edu/xor <u>DOCUMENT ID</u> <u>TECN</u>	rg/mag/osc/PL <i>COMMENT</i>	JG_2009).	NODE=S044BBR
0.0197±0.0032 OUR EVALUATI		ree	CV	$ ightarrow$ UNCHECKED \leftarrow
0.0221±0.0015±0.0058		$E_{\rm cm}^{ee} = 88-94$		
$f(b \rightarrow b\text{-baryon}) = 0.102$	number of identified protons in $b \pm 0.007 \pm 0.027$. They assume $p(X) = (8.0 \pm 4.0)\%$. The value	BR(<i>b</i> -baryon–	$\rightarrow pX) =$	NODE=S044BBR;LINKAGE=BA
	raction by our value of $R_b = \Gamma(b)$			

Γ (anomalous $\gamma+1$, .	es of prompt photons b	eyond e	xpectations for fi	Γ ₄₅ /Γ nal-state	NODE=S044R31 NODE=S044R31
bremsstrahlung	•	DOCUMENT ID	TECN	601415117		NODE COMPA
/ALUE <3.2 × 10 ⁼³	<u>CL%_</u> 95		TECN_	<u>COMMENT</u> Eee = 88–94 G		NODE=S044R31
	port $\Gamma(\gamma X)$	< 8.2 MeV at 95%CL				NODE=S044R31;LINKAGE=A
$\Gamma(e^+e^-\gamma)/\Gamma_{ m total}$	() /	10 000.			Γ ₄₆ /Γ	NODE=S044R34
ALUE	<u>CL%</u>	DOCUMENT ID	TECN	•		NODE=S044R34
<5.2 × 10 ⁻⁴	95			Ecm = 91.2 GeV		
¹ ACTON 91B look	ed for isolat	ted photons with $E>2\%$	of beam	energy ($> 0.9~\mathrm{Ge}$	eV).	NODE=S044R34;LINKAGE=
$-(\mu^+\mu^-\gamma)/\Gamma_{\text{total}}$	l				Γ_{47}/Γ	NODE=S044R35
ALUE	<u>CL%_</u>	DOCUMENT ID	TECN			NODE=S044R35
$< 5.6 \times 10^{-4}$	95	¹ ACTON 91B	OPAL	Ecm = 91.2 GeV	V	
¹ ACTON 91B look	ed for isolat	ted photons with $E>2\%$	of beam	energy ($> 0.9~\mathrm{Ge}$	eV).	NODE=S044R35;LINKAGE=
$\Gamma(au^+ au^-\gamma)/\Gamma_{total}$					Γ_{48}/Γ	NODE=S044R36
VALUE .,, total	<u>CL%</u>		TECN	COMMENT		NODE=5044R36
<7.3 × 10 ⁻⁴	95	¹ ACTON 91B	OPAL	$E_{\rm cm}^{\rm ee} = 91.2 {\rm GeV}$	V	
¹ ACTON 91B look	ked for isolat	ted photons with $E>2\%$	of beam	energy ($> 0.9~\mathrm{Ge}$	eV).	NODE=S044R36;LINKAGE=A
$-(\ell^+\ell^-\gamma\gamma)/\Gamma_{\rm tota}$.i				Γ_{49}/Γ	NODE COMPAE
The value is th		$\ell = e, \mu, \tau.$			- 49/ -	NODE=S044R45 NODE=S044R45
/ALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		NODE=\$044R45
<6.8 × 10 ⁻⁶	95	¹ ACTON 93E	OPAL	Eee 88–94 G	ieV	
1 For $m_{\gamma\gamma}=$ 60 \pm	5 GeV.					NODE=S044R45;LINKAGE=A
$\Gamma(q \overline{q} \gamma \gamma) / \Gamma_{total}$					Γ ₅₀ /Γ	NODE COMPAS
/ALUE	CL%_	DOCUMENT ID	TECN	COMMENT	- 50/ -	NODE=S044R46 NODE=S044R46
<5.5 × 10 ⁻⁶	95	¹ ACTON 93E	OPAL	<i>E</i> ^{ee} _{cm} = 88−94 G	ieV	
1 For $m_{\gamma\gamma}=$ 60 \pm	5 GeV.					NODE=S044R46;LINKAGE=A
-(- /-	110BE=30111(10,E1111(110E=7
$\Gamma(u\overline{ u}\gamma\gamma)/\Gamma_{total}$	CL%	DOCUMENT ID	TECN	COMMENT	Γ ₅₁ /Γ	NODE=S044R47 NODE=S044R47
<3.1 × 10 ⁻⁶	95			$E_{\rm cm}^{ee} = 88-94 {\rm G}$	ieV	11002=30111(1)
1 For $\mathit{m}_{\gamma\gamma} =$ 60 \pm	5 GeV.			CIII		NODE COMPANIANCE
_						NODE=S044R47;LINKAGE=
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{ m total}$					Γ_{52}/Γ	NODE=S044R27
Test of lepton states indicated	-	ber conservation. The v	alue is f	for the sum of th	e charge	NODE=S044R27
/ALUE	<u>CL%_</u>	DOCUMENT ID	TECN	COMMENT		NODE=S044R27
$< 2.5 \times 10^{-6}$	95			$E_{\rm cm}^{ee} = 88-94 {\rm G}$		
$<1.7 \times 10^{-6}$ $<0.6 \times 10^{-5}$	95 05			$E_{\rm cm}^{\rm ee} = 88-94 {\rm G}$		
$<0.6 \times 10^{-5}$	95 95	ADRIANI 931 DECAMP 92	L3 ALEP	$E_{\rm cm}^{ee} = 88-94 \text{ G}$ $E_{\rm cm}^{ee} = 88-94 \text{ G}$		
		5 2 5 11111 32	,!			
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-})$	•				Γ_{52}/Γ_1	NODE=S044R6
•	-	ber conservation. The v	alue is f	for the sum of th	e charge	NODE=S044R6
states indicated /ALUE	d. <u>CL%</u>	DOCUMENT ID T		OMMENT		NODE=S044R6
<0.07	90	ALBAJAR 89 U	A1 <i>E</i>	$p\overline{p}$ cm = 546,630 Ge	V	
$\Gamma(e^{\pm} au^{\mp})/\Gamma_{total}$					Γ ₅₃ /Γ	
ヽ゠ ′	family num	ber conservation. The v	اعليم أما	for the sum of th		NODE=\$044R25
Test of lanter	•	DEI CONSCIVATION. THE V	aiue IS I	ioi the suill Of TN	e charge	NODE=\$044R25
Test of lepton states indicated	d.			~~		NODE COMPOS
states indicated	<u>CL%</u>	DOCUMENT ID	TECN_		/	NODE=S044R25
states indicated $\frac{VALUE}{<2.2\times10^{-5}}$	<u>CL%</u> 95	ABREU 970	DLPH	E _{cm} = 88-94 G		NODE=5044K25
states indicated	<u>CL%</u>	ABREU 970	DLPH		ieV	NODE=5044K25

$\Gamma(\mu^{\pm} au^{\mp})/\Gamma_{ m total}$					Γ ₅₄ /Γ	
• • • • • • • • • • • • • • • • • • • •					- '	NODE=S044R26
states indicated.	illy numbe	er conservation. I	ine v	alue is t	or the sum of the charge	NODE=S044R26
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	NODE=S044R26
$< 1.2 \times 10^{-5}$	95	ABREU	97C	DLPH	E ^{ee} _{cm} = 88–94 GeV	
$< 1.7 \times 10^{-5}$	95	AKERS	95W	OPAL	E ^{ee} _{cm} = 88–94 GeV	
$<1.9 \times 10^{-5}$	95	ADRIANI	931	L3	E ^{ee} _{cm} = 88–94 GeV	
$<1.0 \times 10^{-4}$	95	DECAMP	92	ALEP	E ^{ee} _{cm} = 88–94 GeV	
$\Gamma(pe)/\Gamma_{\text{total}}$					Γ ₅₅ /Γ	NODE=S044PE
	nber and le	epton number con	serva	tions. Cl	narge conjugate states are	NODE=S044PE
implied. <i>VALUE</i>	CL%	DOCUMENT ID		TECN	COMMENT	NODE=S044PE
<1.8 × 10 ⁻⁶	95	¹ ABBIENDI	991		Eee = 88–94 GeV	
¹ ABBIENDI 991 give t we have transformed			ial w	idth Γ(<i>Z</i>	$p(0) \rightarrow p(e) < 4.6 \text{ KeV and}$	NODE=S044PE;LINKAGE=A
$\Gamma(ho\mu)/\Gamma_{total}$					Γ ₅₆ /Γ	NODE=S044PMU
Test of baryon nun implied.	nber and le	epton number con	serva	tions. Cl	narge conjugate states are	NODE=S044PMU
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT	NODE=S044PMU
$<1.8 \times 10^{-6}$	95	¹ ABBIENDI			E ^{ee} _{cm} = 88–94 GeV	
¹ ABBIENDI 991 give t we have transformed			ial wi	dth Γ(<i>Z</i>	$^0 ightarrow~p\mu)<$ 4.4 KeV and	NODE=S044PMU;LINKAGE=A
AVERAGE PAR	TICLE M	ULTIPLICITIES	S IN	HADR	ONIC Z DECAY	NODE=S044260
Summed over p	article and	l antiparticle, whe	n app	ropriate		NODE=S044260
$\langle N_{\gamma} \rangle$						NODE=S044GAM
VALUE		DOCUMENT ID		TECN	COMMENT	NODE=S044GAM
$20.97 \pm 0.02 \pm 1.15$		ACKERSTAFF	98A	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\pi^{\pm}} \rangle$ VALUE		DOCUMENT ID		TECN	COMMENT	NODE=S044PIC NODE=S044PIC
17.03 ±0.16 OUR AVE	RAGE	DOCOMENT ID		TECIV	COMMENT	NODE-30441 IC
17.007 ± 0.209		ABE	04 C	SLD	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$	
$17.26 \pm 0.10 \pm 0.88$		ABREU	98L	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$	
17.04 ± 0.31		BARATE			$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
17.05 ± 0.43		AKERS	94 P	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle \textit{N}_{\pi^0} angle$						NODE=S044PIZ
VALUE		DOCUMENT ID		TECN	COMMENT	NODE=S044PIZ
9.76±0.26 OUR AVERA	GE				•	
$9.55 \pm 0.06 \pm 0.75$					$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$	
$9.63 \pm 0.13 \pm 0.63$		BARATE			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$	
$9.90\pm0.02\pm0.33$		ACCIARRI	96	L3	$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
$9.2 \pm 0.2 \pm 1.0$		ADAM	96	DLPH	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\eta} angle$						NODE=S044ETA
VALUE		DOCUMENT ID			COMMENT	NODE=S044ETA
1.01±0.08 OUR AVERA	GE Erro					
$1.20 \pm 0.04 \pm 0.11$		HEISTER			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$0.97 \pm 0.03 \pm 0.11$					$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$0.93\pm0.01\pm0.09$		ACCIARRI	96	L3	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	

(N.+	١
١	` • ρ±	/

NODE=S044RHC NODE=S044RHC DOCUMENT ID TECN COMMENT 2.57±0.15 OUR AVERAGE

TECN

TECN

COMMENT

COMMENT

¹ BEDDALL ALEPH archive, $E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$ $2.59\!\pm\!0.03\!\pm\!0.16$ 09 $2.40\pm0.06\pm0.43$ ACKERSTAFF 98A OPAL $E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

NODE=S044RHC;LINKAGE=BE

$\langle N_{\rho^0} \rangle$	(N_{ρ^0}	,)
------------------------------	---	--------------	----

VALUE	DOCUMENT_ID	TECN	COMMENT
1.24±0.10 OUR AVERAGE	Error includes scale fac	tor of 1.1.	
$1.19 \!\pm\! 0.10$	ABREU	99J DLPH	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$1.45\!\pm\!0.06\!\pm\!0.20$	BUSKULIC	96H ALEP	$E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$

 $\langle extit{N}_{\omega}
angle$

VALUE	DOCUMENT ID		TECIV	COMMENT
1.02±0.06 OUR AVERAGE				
$1.00\!\pm\!0.03\!\pm\!0.06$	HEISTER	02 C	ALEP	$E_{ m cm}^{ee} = 91.2 \; { m GeV}$
$1.04 \pm 0.04 \pm 0.14$	ACKERSTAFF	98A	OPAL	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$1.17 \pm 0.09 \pm 0.15$	ACCIARRI	97 D	L3	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$

 $\langle N_{n'} \rangle$ VALUE

VALUL		DOCUMENT ID	ILCIV	COMMENT
	0.17 ± 0.05 OUR AVERAGE	Error includes scale fact	or of 2.4.	
	$0.14\ \pm0.01\ \pm0.02$	ACKERSTAFF 98/	A OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
	$0.25\ \pm0.04$	¹ ACCIARRI 971	D L3	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
	\bullet \bullet We do not use the follow	ving data for averages, fit	s, limits, e	etc. • • •
	$0.068\!\pm\!0.018\!\pm\!0.016$	² BUSKULIC 92i	D ALEP	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$

DOCUMENT ID

 $\langle N_{f_0(980)} \rangle$ VALUE

0.147±0.011 OUR AVERAGE				
0.164 ± 0.021	ABREU	99J	DLPH	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.141 \pm 0.007 \pm 0.011$	ACKERSTAFF	98Q	OPAL	$E_{ m cm}^{\it ee} =$ 91.2 GeV

DOCUMENT ID

NODE=S044RHZ NODE=S044RHZ

NODE=S044OME NODE=S044OME

NODE=S044ETP NODE=S044ETP

NODE=S044ETP;LINKAGE=B

NODE=S044ETP;LINKAGE=A

NODE=S044FZ NODE=S044FZ

 $^{^{}m 1}$ BEDDALL 09 analyse 3.2 million hadronic Z decays as archived by ALEPH collaboration and report a value of $2.59 \pm 0.03 \pm 0.15 \pm 0.04$. The first error is statistical, the second systematic, and the third arises from extrapolation to full phase space. We combine the systematic errors in quadrature.

 $^{^1}$ ACCIARRI 97D obtain this value averaging over the two decay channels $\eta'
ightarrow \ \pi^+\pi^-\eta$ and $\eta' \rightarrow \rho^0 \gamma$.

 $^{^2}$ BUSKULIC 92D obtain this value for x>0.1.

 $\langle N_{a_0(980)^{\pm}} \rangle$ VALUE

DOCUMENT ID

ACKERSTAFF 98A OPAL $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ $\langle N_{\phi} \rangle$

NODE=S044PHI NODE=S044PHI

NODE=S044AZC NODE=S044AZC

VALUE DOCUMENT ID TECN COMMENT **0.098±0.006 OUR AVERAGE** Error includes scale factor of 2.0. See the ideogram below. ABE 99E SLD $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$ 0.105 ± 0.008 $0.091\!\pm\!0.002\!\pm\!0.003$ ACKERSTAFF 98Q OPAL $E_{
m cm}^{
m ee}=91.2~{
m GeV}$ 960 DLPH $E_{cm}^{ee} = 91.2 \text{ GeV}$ $0.104 \pm 0.003 \pm 0.007$ ABREU $0.122 \pm 0.004 \pm 0.008$ **BUSKULIC** 96н ALEP $E_{
m cm}^{\it ee}=$ 91.2 GeV

WEIGHTED AVERAGE 0.098±0.006 (Error scaled by 2.0)

 2.24 ± 0.04 OUR AVERAGE

ABE

ABREU

BARATE

AKERS

 2.203 ± 0.071

 $2.26\ \pm0.12$

 $2.42\ \pm0.13$

 $2.21 \ \pm 0.05 \ \pm 0.05$

$\langle N_{f_2(1270)} angle$				NODE=S044F2
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044F2
0.169 ± 0.025 OUR AVERAGE	Error includes scale facto	r of 1.4.		
0.214 ± 0.038	ABREU 99J	DLPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$	
$0.155 \pm 0.011 \pm 0.018$	ACKERSTAFF 98Q	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$	
$\langle \textit{N}_{\textit{f}_{1}(1285)} angle$				NODE=\$044F85
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044F85
0.165 ± 0.051	¹ ABDALLAH 03H	DLPH	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$	
$^{\mathrm{1}}\mathrm{ABDALLAH}$ 03H assume a	$K\overline{K}\pi$ branching ratio of (9.0 ± 0.	4)%.	NODE=S044F85;LINKAGE=A
$\langle N_{f_1(1420)} \rangle$				NODE=S044F20
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=\$044F20
0.056 ± 0.012	¹ ABDALLAH 03H	DLPH	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
$^{ m 1}$ ABDALLAH 03H assume a	$K\overline{K}\pi$ branching ratio of 1	.00%.		NODE=S044F20;LINKAGE=A
$\langle N_{f_2'(1525)} angle$				NODE COMEON
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044F2P NODE=S044F2P
0.012±0.006	ABREU 99J		Eee = 91.2 GeV	-
$\langle \mathit{N}_{\mathit{K}^{\pm}} angle$				NODE COMPC
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044KC NODE=S044KC
				-

04C SLD

 $E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$

98L DLPH $E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$

98V ALEP $E_{\text{cm}}^{\textit{ee}} = 91.2 \text{ GeV}$ 94P OPAL $E_{\text{cm}}^{\textit{ee}} = 91.2 \text{ GeV}$ $\langle N_{K^0} \rangle$ NODE=S044KZ NODE=S044KZ NODE=S044KZ

VALUE	DOCUMENT ID		TECN	COMMENT
2.039±0.025 OUR AVERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$2.093 \pm 0.004 \pm 0.029$	BARATE	000	ALEP	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
2.01 ± 0.08	ABE	99E	SLD	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$2.024 \pm 0.006 \pm 0.042$	ACCIARRI	97L	L3	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$1.962\!\pm\!0.022\!\pm\!0.056$	ABREU	95L	DLPH	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$1.99 \pm 0.01 \pm 0.04$	AKERS	95∪	OPAL	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

$\langle N_{K^*(892)^{\pm}} \rangle$

<u>VALUE</u> 0.72 ±0.05 OUR AVERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT	NODE:
$0.712 \pm 0.031 \pm 0.059$	ABREU	95L	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$	
$0.72\ \pm0.02\ \pm0.08$	ACTON	93	OPAL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	

$\langle N_{K^*(892)^0} \rangle$

(052)				
VALUE	DOCUMENT ID		TECN	COMMENT
0.739±0.022 OUR AVERAGE				
0.707 ± 0.041	ABE	99E	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$
$0.74\ \pm0.02\ \pm0.02$	ACKERSTAFF	9 7 S	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$0.77 \pm 0.02 \pm 0.07$	ABREU	96 U	DLPH	$E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$
$0.83 \pm 0.01 \pm 0.09$	BUSKULIC	96H	ALEP	$E_{ m cm}^{\it ee}=$ 91.2 GeV
$0.97\ \pm0.18\ \pm0.31$	ABREU	93	DLPH	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

$\langle N_{K_2^*(1430)} \rangle$

 $0.19\ \pm0.04\ \pm0.06$

VALUE	DOCUMENT ID		TECN	COMMENT
0.073±0.023	ABREU	99J	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
ullet $ullet$ We do not use the following d	lata for averages	, fits,	limits, e	tc. • • •

95X OPAL $E_{\mathsf{cm}}^{ee} = 91.2 \; \mathsf{GeV}$

¹ AKERS

$\langle N_{D^{\pm}} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
0.187 ± 0.020 OUR AVERAGE	Error includes scale	factor	of 1.5.	See the ideogram below.
$0.170 \pm 0.009 \pm 0.014$	ALEXANDER	96 R	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$
$0.251 \pm 0.026 \pm 0.025$	BUSKULIC	94J	ALEP	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.199 \pm 0.019 \pm 0.024$	¹ ABREU	931	DLPH	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$

NODE=S044KSC NODE=S044KSC

NODE=S044KSZ NODE=S044KSZ

NODE=S044KS2 NODE=S044KS2

NODE=S044KS2;LINKAGE=A

NODE=S044DC NODE=S044DC

 $^{^{1}}$ AKERS 95x obtain this value for x < 0.3.

NODE = S044BS; LINKAGE = A

¹See ABREU 95 (erratum).

 $0.28 \pm 0.01 \pm 0.03$

NODE=S044DC;LINKAGE=A

$\langle N_{D^0} \rangle$				NODE=S044DZ
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044DZ
0.462±0.026 OUR AVERAGE	ALEVANDED OCC	ODAL	E66 01 0 C V	
$0.465 \pm 0.017 \pm 0.027$	ALEXANDER 96R		-	
$0.518 \pm 0.052 \pm 0.035$ $0.403 \pm 0.038 \pm 0.044$	BUSKULIC 94J 1 ABREU 93I		$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
	- ABREU 931	DLPH	E ^{ee} _{cm} = 91.2 GeV	
1 See ABREU 95 (erratum).				NODE=S044DZ;LINKAGE=A
$\langle N_{D^{\pm}} \rangle$				NODE COMPED
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044DSP NODE=S044DSP
0.131±0.010±0.018	ALEXANDER 96R			
			Cili	
$\langle N_{D^*(2010)^{\pm}} \rangle$				NODE=S044DSC
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044DSC
0.183 ±0.008 OUR AVERAGE				
$0.1854 \pm 0.0041 \pm 0.0091$	¹ ACKERSTAFF 98E			
$0.187 \pm 0.015 \pm 0.013$			$E_{cm}^{ee} = 91.2 \; GeV$	
$0.171 \pm 0.012 \pm 0.016$	² ABREU 931	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$	
¹ ACKERSTAFF 98E systemati branching ratios B($D^{*+} \rightarrow D^{0}$ 0.0012.	c error includes an uno $(0,\pi^+)=0.683\pm0.014$ a	certainty and $B(D^0)$	of ± 0.0069 due to the $0 \rightarrow K^-\pi^+) = 0.0383 \pm$	NODE=S044DSC;LINKAGE=B
² See ABREU 95 (erratum).				NODE=S044DSC;LINKAGE=A
$\langle N_{D_{s1}(2536)^+} angle$				NODE=S044DS1
VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT	NODE=\$044D\$1
• • • We do not use the following	g data for averages, fits,	limits, e	etc. • • •	
$2.9^{+0.7}_{-0.6}{\pm}0.2$	¹ ACKERSTAFF 97W	OPAL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
1 ACKERSTAFF 97W obtain thi width is saturated by the D^{st} P^{st}		vith the	assumption that its decay	NODE=S044DS1;LINKAGE=A
$\langle N_{B^*} \rangle$				NODE=S044BS
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044BS

95R DLPH $E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$

¹ ABREU

 1 ABREU 95R quote this value for a flavor-averaged excited state.

/*/					
$\langle N_{J/\psi(1S)} \rangle$ VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044JPS NODE=S044JPS
$0.0056 \pm 0.0003 \pm 0.0004$		96 B		$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
$^{1}\!\:\text{ALEXANDER}$ 96B identify	$J/\psi(1S)$ from the de	cays i	into lept	on pairs.	NODE=S044JPS;LINKAGE=B
$\langle \textit{N}_{\psi(2S)} angle$					NODE=S044P2S
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=5044P2S
$0.0023 \pm 0.0004 \pm 0.0003$	ALEXANDER	96 B	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_p \rangle$					NODE=S044PRO
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044PRO
1.046 ± 0.026 OUR AVERAGE				-00	
1.054 ± 0.035	ABE		SLD	$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
$1.08 \pm 0.04 \pm 0.03$	ABREU			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
1.00 ± 0.07	BARATE			E ^{ee} _{cm} = 91.2 GeV	
0.92 ± 0.11	AKERS	94 P	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\Delta(1232)^{++}} angle$					NODE COMPTO
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044D12 NODE=S044D12
0.087±0.033 OUR AVERAGE	Error includes scale	facto	r of 2.4.		
$0.079 \pm 0.009 \pm 0.011$	ABREU	95W	DLPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$	
$0.22 \pm 0.04 \pm 0.04$	ALEXANDER	95 D	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_A \rangle$					NODE=S044LAM
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S044LAM
0.388±0.009 OUR AVERAGE	Error includes scale			See the ideogram below.	
$0.404 \pm 0.002 \pm 0.007$	BARATE			$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$	
$0.395\!\pm\!0.022$	ABE	99E	SLD	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$	
$0.364 \pm 0.004 \pm 0.017$	ACCIARRI	97L	L3	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$	
$0.374\!\pm\!0.002\!\pm\!0.010$	ALEXANDER	97 D	OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$	
$0.357\!\pm\!0.003\!\pm\!0.017$	ABREU	93L	DLPH	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$	

 $0.0213\!\pm\!0.0021\!\pm\!0.0019$

ALEXANDER 97D OPAL $E_{
m cm}^{\it ee}=$ 91.2 GeV

(N)				
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044SI+ NODE=S044SI+
0.107 ± 0.010 OUR AVERAGE				
$0.114 \pm 0.011 \pm 0.009$		L3	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$	
$0.099 \pm 0.008 \pm 0.013$	ALEXANDER 97	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$	
$\langle N_{\Sigma^-} \rangle$				NODE=S044SI-
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=304451- NODE=S044SI-
0.082±0.007 OUR AVERAGE			-00	
$0.081 \pm 0.002 \pm 0.010$			$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$	
$0.083 \pm 0.006 \pm 0.009$	ALEXANDER 976	OPAL	Ecm = 91.2 GeV	
$\langle N_{\Sigma^{+}+\Sigma^{-}} \rangle$				NODE=S044SIC
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=3044SIC NODE=S044SIC
0.181±0.018 OUR AVERAGE	1		00	
$0.182 \pm 0.010 \pm 0.016$	¹ ALEXANDER 976			
$0.170 \pm 0.014 \pm 0.061$			$E_{cm}^{ee} = 91.2 \; GeV$	
¹ We have combined the value the statistical and systematic isospin symmetry is assumed	errors of the two final	states se	parately in quadrature. If	NODE=S044SIC;LINKAGE=A
$\langle N_{\Sigma^0} angle$				NODE=S044SIZ
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044SIZ
0.076±0.010 OUR AVERAGE 0.095±0.015±0.013	ACCIARRI 00J		$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
$0.095 \pm 0.015 \pm 0.013$ $0.071 \pm 0.012 \pm 0.013$	ALEXANDER 976	L3	•	
$0.070\pm0.012\pm0.013$ $0.070\pm0.010\pm0.010$			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$	
			-CIII	
$\langle N_{(\Sigma^+ + \Sigma^- + \Sigma^0)/3} \rangle$				NODE=S044SIG
VALUE	DOCUMENT ID			NODE=S044SIG
$0.084 \pm 0.005 \pm 0.008$	ALEXANDER 97	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$\langle N_{\Sigma(1385)^+} \rangle$ VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S04413+ NODE=S04413+
$0.0239 \pm 0.0009 \pm 0.0012$	DOCUMENT ID ALEXANDER 97		· · · · · · · · · · · · · · · · · · ·	NODE=304415+
0.0239 ± 0.0009 ± 0.0012	ALEXANDER 91	OIAL	2cm = 91.2 GeV	
$\langle \mathit{N}_{\Sigma(1385)^-} angle$				NODE=S04413-
VALUE	DOCUMENT ID		COMMENT	NODE=S04413-
$0.0240\pm0.0010\pm0.0014$	ALEXANDER 97	OPAL	E ^{ee} _{cm} = 91.2 GeV	
(N)				
$\langle N_{\Sigma(1385)^+ + \Sigma(1385)^-} \rangle$	DOCUMENT ID	TECN	COMMENT	NODE=S044S13 NODE=S044S13
<u>VALUE</u> 0.046 ±0.004 OUR AVERAGE				NODE=3044313
$0.0479 \pm 0.0013 \pm 0.0026$	ALEXANDER 970			
$0.0382\!\pm\!0.0028\!\pm\!0.0045$	ABREU 950	DLPH	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$	
/A/ \				
⟨ N ₌ -⟩ VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S044XI- NODE=S044XI-
0.0258±0.0009 OUR AVERAGE		TECH	COMMENT	10002-304470
$0.0247\!\pm\!0.0009\!\pm\!0.0025$	ABDALLAH 06E	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$	
$0.0259\!\pm\!0.0004\!\pm\!0.0009$	ALEXANDER 970	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$	
/N -\				
$\langle N_{\equiv (1530)^0} \rangle$	DOCUMENT ID	TECN	COMMENT	NODE=\$044X15
<u>VALUE</u> 0.0059±0.0011 OUR AVERAGE	-		.3.	NODE=S044X15
$0.0045 \pm 0.0005 \pm 0.0006$			E ^{ee} _{cm} = 91.2 GeV	
$0.0068\!\pm\!0.0005\!\pm\!0.0004$	ALEXANDER 970			
/A/ \				
$\langle N_{\Omega^-} \rangle$	DOCUMENT ID	TECN	COMMENT	NODE=S044OM- NODE=S044OM-
VALUE 0.00164±0.00028 OUR AVERAC		<u>TECN</u>	COMMENT	110DL-30440IVI-
$0.0018 \pm 0.0003 \pm 0.0002$	ALEXANDER 970	OPAL	E ^{ee} _{cm} = 91.2 GeV	
$0.0014 \pm 0.0002 \pm 0.0004$			$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$	
				

$N_{\Lambda_c^+}$	\rangle

VALUEDOCUMENT IDTECNCOMMENT $0.078 \pm 0.012 \pm 0.012$ ALEXANDER 96R OPAL $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$

NODE=S044L+C NODE=S044L+C

 $\langle N_{\overline{D}} \rangle$

 VALUE (units 10⁻⁶)
 DOCUMENT ID
 TECN
 COMMENT
 NODE=S044DBR

 NODE=S044DBR
 NODE=S044DBR

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

 $5.9\pm1.8\pm0.5$ SCHAEL 06A ALEP $E_{\mathrm{cm}}^{ee}=91.2~\mathrm{GeV}$

NODE=S044DBR;LINKAGE=SC

NODE=S044CHG NODE=S044CHG

$\langle N_{charged} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
20.76 ± 0.16 OUR AVERAGE	Error includes scale fa	actor	of 2.1.	See the ideogram below.
$20.46 \pm 0.01 \pm 0.11$	ACHARD	03 G	L3	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
$21.21\!\pm\!0.01\!\pm\!0.20$	ABREU	99	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
$21.05\!\pm\!0.20$	AKERS	95Z	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$20.91\!\pm\!0.03\!\pm\!0.22$	BUSKULIC	95 R	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
21.40 ± 0.43	ACTON	92 B	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$20.71\!\pm\!0.04\!\pm\!0.77$	ABREU	91H	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
20.7 ± 0.7	ADEVA	91ı	L3	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
$20.1 \pm 1.0 \pm 0.9$	ABRAMS	90	MRK2	$E_{\rm cm}^{\rm ee} = 91.1 \; {\rm GeV}$

WEIGHTED AVERAGE 20.76±0.16 (Error scaled by 2.1)

Z HADRONIC POLE CROSS SECTION

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). This quantity is defined as

$$\sigma_{\it h}^0 = rac{12\pi}{M_{\it Z}^2} \; rac{\Gamma(e^+\,e^-)\,\Gamma({
m hadrons})}{\Gamma_{\it Z}^2}$$

It is one of the parameters used in the Z lineshape fit.

VALUE (nb)	EVTS	DOCUMENT ID		TECN	COMMENT
41.541 ± 0.037 OUR F	IT				
41.501 ± 0.055	4.10M	¹ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
41.578 ± 0.069	3.70M	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
41.535 ± 0.055	3.54M	ACCIARRI	00C	L3	E ^{ee} _{cm} = 88–94 GeV
41.559 ± 0.058	4.07M	² BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV
ullet $ullet$ We do not use	the followin	g data for averages	s, fits,	limits, e	etc. • • •
42 ±4	450	ABRAMS	89B	MRK2	$E_{cm}^{ee} = 89.2-93.0 \text{ GeV}$

NODE=S044SH

NODE=S044SH

NODE=S044SH

 $^{^1}$ SCHAEL 06A obtain this anti-deuteron production rate per hadronic Z decay in the anti-deuteron momentum range from 0.62 to 1.03 GeV/c.

¹ ABBIENDI 01A error includes approximately 0.031 due to statistics, 0.033 due to event selection systematics, 0.029 due to uncertainty in luminosity measurement, and 0.011 due to LEP energy uncertainty.

 2 BARATE 00C error includes approximately 0.030 due to statistics, 0.026 due to experimental systematics, and 0.025 due to uncertainty in luminosity measurement.

NODE=S044SH;LINKAGE=DB

NODE=S044SH;LINKAGE=AC

NODE=S044223

NODE=S044223

Z VECTOR COUPLINGS

These quantities are the effective vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative

(and opposite to that of g^{ν_e} obtained using ν_e scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p\overline{p}$ and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

Θ (/				
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
-0.03817 ± 0.00047 OUR FI	Т			
-0.058 ± 0.016 ± 0.007	5026	$^{ m 1}$ ACOSTA	05м CDF	$E_{cm}^{ar{p}} = 1.96 \; TeV$
-0.0346 ± 0.0023	137.0K	² ABBIENDI	010 OPAL	Eee = 88-94 GeV
-0.0412 ± 0.0027	124.4k	³ ACCIARRI	00c L3	$E_{cm}^{ee} = 88-94 \text{ GeV}$

⁴ ABE

¹ ACOSTA 05M determine the forward–backward asymmetry of e^+e^- pairs produced via $q\overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial–vector couplings of the Z to e^+e^- , assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

BARATE

00C ALEP $E_{\text{cm}}^{\text{ge}} = 88-94 \text{ GeV}$ 95J SLD $E_{\text{cm}}^{\text{ge}} = 91.31 \text{ GeV}$

order radiative corrections have not been taken into account. 2 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

 3 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

NODE=S044GEV NODE=S044GEV

NODE=S044GEV;LINKAGE=AC

NODE=S044GEV;LINKAGE=OA

NODE=S044GEV;LINKAGE=Z

NODE=S044GEV;LINKAGE=KG

NODE=S044GMV NODE=S044GMV

g_V^μ

æe,

 -0.0400 ± 0.0037

 -0.0414 ± 0.0020

- v					
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.0367 ± 0.0023 OUR	FIT				
$-0.0388 {}^{\displaystyle +0.0060}_{\displaystyle -0.0064}$	182.8K	¹ ABBIENDI	010	OPAL	<i>E</i> ^{ee} _{cm} = 88–94 GeV
-0.0386 ± 0.0073	113.4k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0362\!\pm\!0.0061$		BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV
\bullet \bullet We do not use the	ne following	data for averages	s, fits,	limits, e	etc. • • •
$-0.0413\!\pm\!0.0060$	66143	³ ABBIENDI	01K	OPAL	E ^{ee} _{cm} = 89–93 GeV

 1 ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

 2 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

NODE=S044GMV;LINKAGE=OA

NODE=S044GMV:LINKAGE=Z

NODE=S044GMV;LINKAGE=GM

 g_V^{τ}

VALUE	<u>EVTS</u>	DOCUMENT ID T		TECN	COMMENT
-0.0366 ± 0.0010 OUR	FIT				
-0.0365 ± 0.0023	151.5K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.0384\!\pm\!0.0026$	103.0k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0361\!\pm\!0.0068$		BARATE	00 C	ALEP	$E_{\rm cm}^{ee} = 88-94 \text{ GeV}$

 $^{^1}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

NODE=S044GTV NODE=S044GTV

NODE=S044GTV;LINKAGE=OA

NODE=S044GTV;LINKAGE=Z

 $^{^4}$ ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.0507\pm0.0096\pm0.0020$.

³ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

 $^{^2}$ ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

&V VALUE	EVTS	DOCUMENT ID)	TECN	COMMENT	NODE=S044GLV NODE=S044GLV
$-0.03783 \pm 0.00041 \text{ O}$						
-0.0358 ± 0.0014	471.3K	¹ ABBIENDI			E ^{ee} _{cm} = 88–94 GeV	
-0.0397 ± 0.0020	379.4k	² ABREU			Eee = 88–94 GeV	
-0.0397 ± 0.0017	340.8k	³ ACCIARRI	00C		$E_{\rm cm}^{\rm ee} = 88-94 \; {\rm GeV}$	
-0.0383 ± 0.0018	500k	BARATE			E ^{ee} _{cm} = 88–94 GeV	
¹ ABBIENDI 010 use and forward-backwa ² Using forward-back	ard lepton	asymmetries.	- polariz	zation in	addition to the lineshape	NODE=S044GLV;LINKAGE=OA
	e their me	easurement of the	e $ au$ pol	arizatior	n in addition to forward-	NODE=S044GLV;LINKAGE=B NODE=S044GLV;LINKAGE=Z
g v VALUE	EVTS	DOCUMENT ID)	TECN	COMMENT	NODE=S044GUV NODE=S044GUV
0.25 +0.07 OUR AV		<u>DOCOMENT ID</u>		TECH	COMMENT	NOBE=304400 V
0.00		1			_n <u>n</u>	
0.201 ± 0.112	156k	1 ABAZOV	11D		$E_{\text{cm}}^{p\overline{p}} = 1.97 \text{ TeV}$	
0.27 ± 0.13	1500	² AKTAS	06	H1	$e^{\pm} p ightarrow \; \overline{ u}_{m{e}}(u_{m{e}}) X, \ \sqrt{s} pprox 300 \; {\sf GeV}$	
$0.24 \begin{array}{c} +0.28 \\ -0.11 \end{array}$		³ LEP-SLC	06		Eee = 88–94 GeV	
$0.399^{+0.152}_{-0.188} \pm 0.066$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$	
The candidate even $E_T>25~{ m GeV}$, at lrange 50–1000 GeV the di-electron mas and the value of sin	ts are selected to the seast one electric that f' . From the seast f' is, they denote that $f' = \frac{1}{2} \frac{1}{2} \frac{1}{e} $	cted by requiring the ectron in the center forward-backward rive the axial and 0.2309 ± 0.0008	wo isola ral region d asymin vector (stat) ±	ated election and to metry, decoupling 0.0006(NODE=S044GUV;LINKAGE=AB
$(1.5 \le Q^2 \le 15,00)$ quark couplings the values.	00 GeV ²) e electron	differential cross and d -quark cou	sections plings a	s. In the are fixed	V^2) and charged current e determination of the <i>u</i> - l to their standard model	NODE=S044GUV;LINKAGE=AK
³ LEP-SLC 06 is a co quark tagging. s- a	ombinatior nd d-quarl	of the results fro couplings are ass	om LEP sumed 1	and SL to be ide	C experiments using light entical.	NODE=S044GUV;LINKAGE=LS
⁴ ACOSTA 05M dete	rmine the	forward-backward	asymn	netry of	e^+e^- pairs produced via	NODE=S044GUV;LINKAGE=AC
$q\overline{q} \rightarrow Z/\gamma^* \rightarrow$	e ⁺ e ⁻ in	15 M(e^+e^-) effe	ective n	nass bins	s ranging from 40 GeV to al-vector couplings of the	
Z to the light quar	ks, assumi	ng the electron co	ouplings	are as	predicted by the Standard	
Model. Higher orde	er radiative	corrections have	not be	en taken	i into account.	
g_V^d						NODE=S044GDV
VALUE	<u>EVTS</u>	<u>DOCUMENT ID</u>)	<u>TECN</u>	COMMENT	NODE=S044GDV
$-0.33 \begin{array}{l} +0.05 \\ -0.06 \end{array}$ OUR A	WERAGE					
$-0.351\!\pm\!0.251$	156k	$^{ m 1}$ ABAZOV	11 D	D0	$E_{cm}^{oldsymbol{p}oldsymbol{\overline{p}}}=1.97\;TeV$	
-0.33 ± 0.33	1500	² AKTAS	06	H1	$e^{\pm} p ightarrow \; \overline{ u}_e(u_e) X, \ \sqrt{s} pprox 300 \; {\sf GeV}$	
$-0.33 \begin{array}{l} +0.05 \\ -0.07 \end{array}$		³ LEP-SLC	06		$V_s \approx 300 \text{ GeV}$ $E_{cm}^{ee} = 88-94 \text{ GeV}$	
-0.07 $-0.226 + 0.635 \pm 0.090$ $-0.226 + 0.090 \pm 0.090$	5026	⁴ ACOSTA	05м	CDF	$E_{CM}^{p\overline{p}} = 1.96 \; TeV$	
$^{1} \rm ABAZOV~11D~stud$ The candidate even $E_{T} > 25~\rm GeV,~at~krange~50–1000~\rm GeV$	y $p\overline{p} \rightarrow \overline{p}$ ts are selected to the electron of the elect	$Z/\gamma^*e^+e^-$ evented by requiring the ectron in the center forward-backward ive the axial and	ts using wo isola ral region d asymit vector	g 5 fb ⁻¹ ated elect on and t metry, decoupling	the data at $\sqrt{s}=1.96$ TeV. Stromagnetic showers with the di-electron mass in the etermined as a function of $\frac{1}{2}$ of the u - and d - quarks	NODE=S044GDV;LINKAGE=AB
2 AKTAS 06 fit the (1.5 \leq Q 2 \leq 15,00 quark couplings the values	neutral ci 00 GeV ²) e electron	urrent $(1.5 \le Q^2)$ differential cross sand u -quark coupling	$r^2 \leq 30$ sections plings r^2	,000 Ge s. In the are fixed	V ²) and charged current e determination of the <i>d</i> - l to their standard model	NODE=S044GDV;LINKAGE=AK
³ LEP-SLC 06 is a conquark tagging. s- a	ombinatior nd d-quarl	of the results fro couplings are ass	m LEP	and SL to be ide	C experiments using light entical.	NODE=S044GDV;LINKAGE=LS
⁴ ACOSTA 05M dete $q \overline{q} \rightarrow Z/\gamma^* \rightarrow$	rmine the e^+e^- in sults are u	forward-backward 15 M(e^+e^-) effe sed to obtain the	asymn ective n	netry of nass bins	e ⁺ e ⁻ pairs produced via s ranging from 40 GeV to al-vector couplings of the	NODE=S044GDV;LINKAGE=AC

Z AXIAL-VECTOR COUPLINGS

These quantities are the effective axial-vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative

(and opposite to that of $g^{
u}e$ obtained using u_e scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_{μ} , and A_{τ} measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p\overline{p}$ and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

NODE=S044219

NODE=S044219

g _A					NODE=S044GEA
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	NODE=S044GEA

VALUE	EVIS	DOCUMENT ID		TECN	COMMENT
-0.50111±0.00035 OUR FI	T				
-0.528 ± 0.123 ± 0.059	5026	$^{ m 1}$ ACOSTA	05м	CDF	$E_{cm}^{oldsymbol{p}\overline{oldsymbol{p}}}$ = 1.96 TeV
$-0.50062\!\pm\!0.00062$	137.0K	² ABBIENDI	010	OPAL	$E_{cm}^{ee} = 88-94 \; GeV$
-0.5015 ± 0.0007	124.4k	³ ACCIARRI	00C	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
-0.50166 ± 0.00057		BARATE	00C	ALEP	<i>E</i> ^{ee} _{cm} = 88−94 GeV
-0.4977 ± 0.0045		⁴ ABE	95J	SLD	$E_{\rm cm}^{ee} = 91.31 \; {\rm GeV}$

 1 ACOSTA 05M determine the forward–backward asymmetry of $e^+\,e^-$ pairs produced via $q\overline{q}\to Z/\gamma^*\to e^+\,e^-$ in 15 M($e^+\,e^-$) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial–vector couplings of the Z to $e^+\,e^-$, assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

² ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

 3 ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

NODE=S044GEA;LINKAGE=AC

NODE=S044GEA;LINKAGE=OA

NODE=S044GEA;LINKAGE=Z

NODE=S044GEA;LINKAGE=KG

NODE=S044GMA

<u>ALUE EVTS DOCUMENT ID TECN COMMENT</u> NODE=S044GMA

NODE=S044GMA

VALUE		_ <u>EV15</u>	DOCUMENT ID		TECIV	COMMENT			
-0.50120	±0.00054 O	JR FIT							
-0.50117	± 0.00099	182.8K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV			
-0.5009	± 0.0014	113.4k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV			
-0.50046	± 0.00093		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV			
• • • We do not use the following data for averages, fits, limits, etc. • • •									
-0.520	\pm 0.015	66143	³ ABBIENDI	01K	OPAL	E ^{ee} _{cm} = 89–93 GeV			

 1 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

 2 ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

NODE=S044GMA;LINKAGE=OA

NODE=S044GMA;LINKAGE=Z

NODE=S044GMA;LINKAGE=GM

	VALUE	EVIS	DOCUMENT ID		ILCIV	COMMENT		
-0.50204±0.00064 OUR FIT								
	-0.50165 ± 0.00124	151.5K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV		
	-0.5023 ± 0.0017	103.0k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV		
	-0.50216 ± 0.00100		BARATE	00C	ALEP	$E_{cm}^{ee} = 88-94 \text{ GeV}$		

 1 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

NODE=S044GTA;LINKAGE=OA

NODE=S044GTA;LINKAGE=Z

⁴ ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.4968 \pm 0.0039 \pm 0.0027$.

³ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

 $^{^2}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

						0/23/2013 10.33 Tage
g _A VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	NODE=S044GLA NODE=S044GLA
-0.50123 ± 0.00026 O		<u>DOCOMENT ID</u>		TLCN	COMMENT	NODE-3044GE/
-0.50089 ± 0.00045	471.3K	¹ ABBIENDI			E ^{ee} _{cm} = 88–94 GeV	
-0.5007 ± 0.0005	379.4k	ABREU	00F	DLPH	Eee = 88-94 GeV	
-0.50153 ± 0.00053	340.8k	² ACCIARRI	00C	L3	<i>E</i> ^{ee} cm = 88−94 GeV	
-0.50150 ± 0.00046	500k	BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV	
and forward-backw	ard lepton se their m	asymmetries. easurement of the			addition to the lineshape in addition to forward-	NODE=S044GLA;LINKAGE=OA NODE=S044GLA;LINKAGE=Z
g u VALUE	EVTS	DOCUMENT ID		TEČN	COMMENT	NODE=S044GUA NODE=S044GUA
0.50 +0.04 OUR AV		DOCOMENT ID		TECN	COMMENT	NODE—3044GGA
0.501±0.110	156k	¹ ABAZOV	11 D	DΩ	$E_{cm}^{p\overline{p}} = 1.97 \; TeV$	
0.501 ± 0.110 0.57 ± 0.08	150k 1500	² AKTAS	06	H1	$e^{\pm} p \rightarrow \overline{\nu}_e(\nu_e) X$,	
).57 ±0.06	1500	- AKTAS	00	пт	$e^- p \rightarrow \nu_e (\nu_e) \lambda$, $\sqrt{s} \approx 300 \text{ GeV}$	
$0.47 \begin{array}{l} +0.05 \\ -0.33 \end{array}$		³ LEP-SLC	06		$E_{\rm cm}^{\rm ee} = 88-94 \text{ GeV}$	
					• • • • • • • • • • • • • • • • • • • •	
$.441^{+0.207}_{-0.173}\pm0.067$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$	
$E_T >$ 25 GeV, at I range 50–1000 GeV the di-electron mass and the value of si 2 AKTAS 06 fit the	least one eld. From the ss, they de ${\sf n}^2 heta^\ell_{eff} = 0$ neutral c	ectron in the centre forward-backward rive the axial and 0.2309 ± 0.0008 (urrent $(1.5 \leq Q^2)$	ral region ${ m d}$ asymmetric asymmetric ${ m d}$ stat) ${ m d}$	on and t metry, de coupling 0.0006(s ,000 Ge	tromagnetic showers with the di-electron mass in the etermined as a function of s of the u - and d - quarks syst). V^{2} and charged current the determination of the u -	NODE=S044GUA;LINKAGE=AK
quark couplings the values.	e electron	and <i>d</i> -quark cou	plings a	are fixed	to their standard model C experiments using light	NODE COMCUM LINUXAGE LC
quark tagging. s- a	and d-quarl	k couplings are ass	sumed t	to be ide	entical.	NODE=S044GUA;LINKAGE=LS
$q\overline{q} \to Z/\gamma^* \to 600$ GeV. These re	e ⁺ e ⁻ in esults are u rks, assumi	$15~{ m M}(e^+e^-)$ effects sed to obtain the ng the electron co	ective m vector ouplings	nass bins and axi are as p	e ⁺ e ⁻ pairs produced via s ranging from 40 GeV to al-vector couplings of the oredicted by the Standard into account.	NODE=S044GUA;LINKAGE=AC
g d A						NODE=S044GDA
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	NODE=S044GDA NODE=S044GDA
-0.523 ^{+0.050} OUR	AVERAGE					
-0.497 ± 0.165	156k	¹ ABAZOV	11 D	D0	$E_{Cm}^{ar{p}ar{p}}=1.97\;TeV$	
-0.497 ± 0.103 -0.80 ± 0.24	150k 1500	² AKTAS	06	H1	$e^{\pm} p \rightarrow \overline{\nu}_e(\nu_e) X$,	
					$\sqrt{s} \approx 300 \text{ GeV}$	
$-0.52 \begin{array}{l} +0.05 \\ -0.03 \end{array}$		³ LEP-SLC	06		$E_{\rm cm}^{ee}=88$ –94 GeV	
$-0.016^{+0.346}_{-0.536}\pm0.091$	1 5026	⁴ ACOSTA	05м	CDF	$E_{\rm cm}^{p\overline{p}}=1.96~{ m TeV}$	
1 ABAZOV 11D students The candidate ever $E_{T} >$ 25 GeV, at I range 50–1000 GeV	ly $p\overline{p} \rightarrow 2$ ints are selected to the least one element of the least, they de	$Z/\gamma^*e^+e^-$ event cted by requiring the dectron in the central eforward-backward rive the axial and	ts using wo isola ral region d asymit vector	g 5 fb ⁻¹ ated electon and t metry, de coupling	data at $\sqrt{s}=1.96$ TeV. tromagnetic showers with the di-electron mass in the etermined as a function of s of the u - and d - quarks	NODE=S044GDA;LINKAGE=AB
2 AKTAS 06 fit the (1.5 \leq Q 2 \leq 15,0 quark couplings the values	neutral connection of the neutral connection	urrent $(1.5 \le Q^2)$ differential cross sand u -quark couples.	≤ 30 sections plings a	,000 Ge' s. In the are fixed	V ²) and charged current e determination of the <i>d</i> - to their standard model	NODE=S044GDA;LINKAGE=AK
³ LEP-SLC 06 is a c quark tagging. s- a	and d-quarl	k couplings are ass	sumed 1	to be ide	C experiments using light entical.	NODE=S044GDA;LINKAGE=LS
⁴ ACOSTA 05M dete	ermine the e^+e^- in	forward-backward 15 M(e^+e^-) effe	asymm ctive m	netry of a	e^+e^- pairs produced via s ranging from 40 GeV to	NODE=S044GDA;LINKAGE=AC

Z COUPLINGS TO NEUTRAL LEPTONS

Averaging over neutrino species, the invisible Z decay width determines the effective neutrino coupling $g^{\nu\ell}$. For $g^{\nu e}$ and $g^{\nu\mu}$, $\nu_e e$ and $\nu_\mu e$ scattering results are combined with g^e_A and g^e_V measurements at the Z mass to obtain g^{ν}_e and g^{ν}_μ following NOVIKOV 93C.

NODE=S044228

NODE=S044228

Æ	νø
ĸ	*
u	

VALUE	DOCUMENT ID	COMMENT		
0.50076±0.00076	¹ LEP-SLC 06	E ^{ee} _{cm} = 88–94 GeV		

NODE=S044GNL NODE=S044GNL

¹ From invisible *Z*-decay width.

NODE=S044GNL;LINKAGE=LE

g^νe <u>VAL</u>UE

 0.528 ± 0.085

 NODE=S044GNE NODE=S044GNE

 1 VILAIN 94 derive this value from their value of $g^{\nu\mu}$ and their ratio $g^{\nu e}/g^{\nu\mu}=1.05^{+0.15}_{-0.18}.$

NODE=S044GNE;LINKAGE=A

 $g^{
u_{\mu}}$

 NODE=S044GNM NODE=S044GNM

 1 VILAIN 94 derive this value from their measurement of the couplings $g_A^{e\nu_\mu}=-0.503\pm0.017$ and $g_V^{e\nu_\mu}=-0.035\pm0.017$ obtained from $\nu_\mu e$ scattering. We have re-evaluated this value using the current PDG values for g_A^e and g_V^e .

NODE=S044GNM;LINKAGE=A

Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the Z these quantities are defined as

$$A_f = \frac{2g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2}$$

where g_V^f and g_A^f are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044224

NODE=S044224

 A_e

Using polarized beams, this quantity can also be measured as $(\sigma_L - \sigma_R)/(\sigma_L + \sigma_R)$, where σ_L and σ_R are the e^+e^- production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.

NODE=S044AE

NODE=S044AE

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.1515±0.0019 OUR AVERA	AGE				
$0.1454 \pm 0.0108 \pm 0.0036$	144810	$^{ m 1}$ abbiendi	010	OPAL	Eee = 88-94 GeV
0.1516 ± 0.0021	559000	² ABE	01 B	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.24 \; \mathrm{GeV}$
$0.1504 \pm 0.0068 \pm 0.0008$		³ HEISTER	01	ALEP	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.1382 \pm 0.0116 \pm 0.0005$	105000	⁴ ABREU	00E	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.1678 \pm 0.0127 \pm 0.0030$	137092	⁵ ACCIARRI	98H	L3	$E_{\mathrm{cm}}^{\mathrm{ee}} = 88-94 \; \mathrm{GeV}$
$0.162\ \pm0.041\ \pm0.014$	89838	⁶ ABE	97	SLD	$E_{cm}^{ee} = 91.27 \; GeV$
$0.202\ \pm0.038\ \pm0.008$		⁷ ABE	95J	SLD	$E_{\rm cm}^{ee} = 91.31 \; {\rm GeV}$

 1 ABBIENDI 010 fit for A_e and A_τ from measurements of the τ polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.

ABE 01B use the left-right production and left-right forward-backward decay asymmetries in leptonic Z decays to obtain a value of 0.1544 \pm 0.0060. This is combined with left-right production asymmetry measurement using hadronic Z decays (ABE 00B) to obtain the quoted value.

³ HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the au.

⁴ABREU 00E obtain this result fitting the τ polarization as a function of the polar τ production angle. This measurement is a combination of different analyses (exclusive τ decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).

 5 Derived from the measurement of forward-backward τ polarization asymmetry.

 6 ABE 97 obtain this result from a measurement of the observed left-right charge asymmetry, $A_Q^{\rm obs}=0.225\pm0.056\pm0.019,$ in hadronic Z decays. If they combine this value of $A_Q^{\rm obs}$ with their earlier measurement of $A_{LR}^{\rm obs}$ they determine A_e to be $_7^{\rm obs}0.1574\pm0.0197\pm0.0067$ independent of the beam polarization.

⁷ ABE 95J obtain this result from polarized Bhabha scattering.

NODE=S044AE;LINKAGE=OA

NODE=S044AE;LINKAGE=BB

NODE=S044AE;LINKAGE=HE

NODE=S044AE;LINKAGE=L

NODE=S044AE;LINKAGE=A NODE=S044AE;LINKAGE=E

NODE=S044AE:LINKAGE=KG

4	Δ		
•	7	μ	ι

This quantity is directly extracted from a measurement of the left-right forward-backward asymmetry in $\mu^+\mu^-$ production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the *Z-e-e* coupling parameter μ^-

 VALUE
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.142 \pm 0.015
 16844
 1 ABE
 01B SLD
 $E_{cm}^{ee} = 91.24 \text{ GeV}$

 1 ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\mu^+\mu^-$ decays of the Z boson obtained with a polarized electron beam.

The LEP Collaborations derive this quantity from the measurement of the τ polarization in $Z \to \tau^+ \tau^-$. The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in $Z \to \tau^+ \tau^-$ produced using a polarized e^- beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

VALUE EVTS		DOCUMENT ID		TECN	COMMENT			
0.143 ±0.004 OUR AVERAGE								
$0.1456\!\pm\!0.0076\!\pm\!0.0057$	144810	$^{ m 1}$ abbiendi	010	OPAL	E ^{ee} _{cm} = 88–94 GeV			
$0.136\ \pm0.015$	16083	² ABE	01 B	SLD	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.24 \; \mathrm{GeV}$			
$0.1451\!\pm\!0.0052\!\pm\!0.0029$		³ HEISTER	01	ALEP	E ^{ee} _{cm} = 88–94 GeV			
$0.1359\!\pm\!0.0079\!\pm\!0.0055$	105000	⁴ ABREU	00E	DLPH	$E_{\mathrm{cm}}^{ee} = 88-94 \; \mathrm{GeV}$			
$0.1476 \pm 0.0088 \pm 0.0062$	137092	ACCIARRI	98н	L3	E ^{ee} _{cm} = 88–94 GeV			

 1 ABBIENDI 010 fit for A_e and A_τ from measurements of the τ polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.

 2 ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\tau^+\tau^-$ decays of the Z boson obtained with a polarized electron beam.

 3 HEISTER 01 obtain this result fitting the τ polarization as a function of the polar production angle of the $\tau.$

⁴ABREU 00E obtain this result fitting the τ polarization as a function of the polar τ production angle. This measurement is a combination of different analyses (exclusive τ decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).

As

The SLD Collaboration directly extracts this quantity by a simultaneous fit to four measured s-quark polar angle distributions corresponding to two states of e^- polarization (positive and negative) and to the K^+K^- and $K^\pm K^0_S$ strange particle tagging modes in the hadronic final states.

VALUEEVTSDOCUMENT IDTECNCOMMENT $\mathbf{0.895 \pm 0.066 \pm 0.062}$ 28701 ABE00DSLD $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

¹ ABE 00D tag $Z \to s\overline{s}$ events by an absence of B or D hadrons and the presence in each hemisphere of a high momentum K^{\pm} or K_{S}^{0} .

A_c

This quantity is directly extracted from a measurement of the left-right forward-backward asymmetry in $c\overline{c}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

VALUE	DOCUMENT	TID TECN COMMENT						
0.670 ±0.027 OUR FIT								
$0.6712 \pm 0.0224 \pm 0.0157$	¹ ABE	05 SLD E_{cm}^{ee} 91.24 GeV						
• • • We do not use the following data for averages, fits, limits, etc. • •								
$0.583 \pm 0.055 \pm 0.055$	² ABE	02G SLD $E_{cm}^{ee} = 91.24 \text{ GeV}$						
0.688 +0.041	3 ABF	01C SLD $F_{ee}^{ee} = 91.25 \text{ GeV}$						

 1 ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $c\overline{c}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying c–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (9970 events) $A_c=0.6747\pm0.0290\pm0.0233$. Taking into account all correlations with earlier results reported in ABE 02G and ABE 01C, they obtain the quoted overall SLD result.

 2 ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously $A_{\mbox{\scriptsize b}}$ and $A_{\mbox{\scriptsize c}}.$

³ ABE 01C tag $Z \to c \bar{c}$ events using two techniques: exclusive reconstruction of D^{*+} , D^+ and D^0 mesons and the soft pion tag for $D^{*+} \to D^0 \pi^+$. The large background from

NODE=S044AM NODE=S044AM

NODE=S044AM

NODE=S044AM;LINKAGE=BB

NODE=S044AT NODE=S044AT

NODE=S044AT

NODE=S044AT;LINKAGE=OA

NODE=S044AT;LINKAGE=BB

NODE=S044AT;LINKAGE=HE

NODE=S044AT;LINKAGE=L

NODE=S044AS NODE=S044AS

NODE=S044AS

NODE=S044AS;LINKAGE=A

NODE=S044AC

NODE=S044AC

NODE=S044AC;LINKAGE=AB

NODE=S044AC;LINKAGE=G2

NODE=S044AC;LINKAGE=A

D mesons produced in $b\overline{b}$ events is separated efficiently from the signal using precision vertex information. When combining the $A_{\mathcal{C}}$ values from these two samples, care is taken to avoid double counting of events common to the two samples, and common systematic errors are properly taken into account.

Аb

This quantity is directly extracted from a measurement of the left-right forward-backward asymmetry in $b\overline{b}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter $A_{\rm e}$. OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

as explained in the	note The	z boson and rei	. LEP	-SLC 00.					
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
0.923 ±0.020 OUR FIT									
$0.9170 \pm 0.0147 \pm 0.0145$		¹ ABE	05	SLD	$E_{ m cm}^{\it ee}=$ 91.24 GeV				
\bullet \bullet We do not use the	following d	ata for averages,	fits, li	mits, etc	. • • •				
$0.907\ \pm0.020\ \pm0.024$	48028	² ABE	03F	SLD	$E_{cm}^{\mathit{ee}} = 91.24 \; GeV$				
$0.919 \ \pm 0.030 \ \pm 0.024$		³ ABE	02G	SLD	$E_{ m cm}^{ m ee}=$ 91.24 GeV				
$0.855\ \pm0.088\ \pm0.102$	7473	⁴ ABE	99L	SLD	$E_{ m cm}^{\it ee}=$ 91.27 GeV				

- 1 ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $b\,\overline{b}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying b–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (25917 events) $A_b=0.9173\pm0.0184\pm0.0173.$ Taking into account all correlations with earlier results reported in ABE 03F, ABE 02G and ABE 99L, they obtain the quoted overall SLD result.
- 2 ABE 03F obtain an enriched sample of $b\overline{b}$ events tagging on the invariant mass of a 3-dimensional topologically reconstructed secondary decay. The charge of the underlying b quark is obtained using a self-calibrating track-charge method. For the 1996–1998 data sample they measure $A_b=0.906\pm0.022\pm0.023$. The value quoted here is obtained combining the above with the result of ABE 98I (1993–1995 data sample).
- 3 ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_b and A_c .
- ⁴ ABE 99L obtain an enriched sample of $b\overline{b}$ events tagging with an inclusive vertex mass cut. For distinguishing b and \overline{b} quarks they use the charge of identified K^{\pm} .

TRANSVERSE SPIN CORRELATIONS IN $Z ightarrow au^+ au^-$

The correlations between the transverse spin components of $\tau^+\tau^-$ produced in Z decays may be expressed in terms of the vector and axial-vector couplings:

$$C_{TT} = \frac{|\mathbf{g}_A^{\tau}|^2 - |\mathbf{g}_V^{\tau}|^2}{|\mathbf{g}_A^{\tau}|^2 + |\mathbf{g}_V^{\tau}|^2}$$

$$C_{TN} = -2\frac{|\boldsymbol{g}_A^{\tau}||\boldsymbol{g}_V^{\tau}|}{|\boldsymbol{g}_A^{\tau}|^2 + |\boldsymbol{g}_V^{\tau}|^2}\sin(\boldsymbol{\Phi}_{\boldsymbol{g}_V^{\tau}} - \boldsymbol{\Phi}_{\boldsymbol{g}_A^{\tau}})$$

 C_{TT} refers to the transverse-transverse (within the collision plane) spin correlation and C_{TN} refers to the transverse-normal (to the collision plane) spin correlation.

The longitudinal τ polarization P_{τ} (= $-A_{\tau}$) is given by:

$$P_{\tau} = -2 \frac{|g_A^{\tau}||g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \cos(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

Here Φ is the phase and the phase difference $\Phi_{\mathcal{G}_V^{\mathcal{T}}} - \Phi_{\mathcal{G}_A^{\mathcal{T}}}$ can be obtained using both the measurements of C_{TN} and $P_{\mathcal{T}}$.

c_{TT}					
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.01 ± 0.12 OUR AVER	AGE				
$0.87 \pm 0.20 {+0.10 \atop -0.12}$	9.1k	ABREU	97G	DLPH	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$
$1.06\!\pm\!0.13\!\pm\!0.05$	120k	BARATE	97 D	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
C _{TN}					
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.08\pm0.13\pm0.04$	120k	¹ BARATE		ALEP	$E_{\mathrm{cm}}^{ee} = 91.2 \; \mathrm{GeV}$
1 DADATE 078	tara alianta da la				D 0140 0007

 $^{^1}$ BARATE 97D combine their value of C_{TN} with the world average $P_{\tau}=-0.140\pm0.007$ to obtain $\tan(\Phi_{\mathcal{G}_{N}^{T}}-\Phi_{\mathcal{G}_{A}^{T}})=-0.57\pm0.97.$

NODE=S044AB NODE=S044AB

NODE=S044AB

NODE=S044AB;LINKAGE=AB

NODE=S044AB;LINKAGE=F

NODE=S044AB;LINKAGE=G2

NODE=S044AB;LINKAGE=D

NODE=S044248

NODE=S044248

NODE=S044CTT NODE=S044CTT

NODE=S044CTN NODE=S044CTN

NODE=S044CTN;LINKAGE=A

FORWARD-BACKWARD $e^+e^- \rightarrow f \bar{f}$ CHARGE ASYMMETRIES

These asymmetries are experimentally determined by tagging the respective lepton or quark flavor in $e^+\,e^-$ interactions. Details of heavy flavor (c- or b-quark) tagging at LEP are described in the note on "The Z boson" and ref. LEP-SLC 06. The Standard Model predictions for LEP data have been (re)computed using the ZFITTER package (version 6.36) with input parameters $M_Z\!=\!91.187~{\rm GeV},~M_{\rm top}\!=\!174.3~{\rm GeV},~M_{\rm Higgs}\!=\!150~{\rm GeV},~\alpha_s\!=\!0.119,~\alpha^{\left(5\right)}~(M_Z)\!=\,1/128.877$ and the Fermi constant $G_F\!=\!1.16637\times10^{-5}~{\rm GeV}^{-2}$ (see the note on "The Z boson" for references). For non-LEP data the Standard Model predictions are as given by the

NODE=S044280

NODE=S044280

$^ A_{FB}^{(0,e)}$ CHARGE ASYMMETRY IN $e^+\,e^- ightarrow \,\,e^+\,e^ ^-$

authors of the respective publications.

NODE=S044Z01

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}^2$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

NODE=S044Z01

DOCUMENT ID ASYMMETRY (%) TECN 1.45 ± 0.25 OUR FIT ¹ ABBIENDI 0.89 ± 0.44 91.2 01A OPAL 1.57 1.71 ± 0.49 91.2 ABREU 00F DLPH 1.57 **ACCIARRI** 1.06 ± 0.58 1.57 91.2 00C L3 ² BARATE 1.88 ± 0.34 1.57 91.2 00C ALEP NODE=S044Z01

 1 ABBIENDI 01A error includes approximately 0.38 due to statistics, 0.16 due to event selection systematics, and 0.18 due to the theoretical uncertainty in t-channel prediction.

NODE=S044Z01;LINKAGE=DB

 2 BARATE 00C error includes approximately 0.31 due to statistics, 0.06 due to experimental systematics, and 0.13 due to the theoretical uncertainty in t-channel prediction.

NODE=S044Z01;LINKAGE=A

– $A_{FB}^{(0,\mu)}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~\mu^+\mu^-$ —

NODE=S044Z0A

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}A_{\mu}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

NODE=S044Z0A

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		<u>TECN</u>	NODE=S044Z0A
1.69± 0.13 OUR FIT			1		0041	
1.59 ± 0.23	1.57	91.2		-	OPAL	
1.65 ± 0.25	1.57	91.2	_		DLPH	
1.88 ± 0.33	1.57	91.2		00 C		
1.71 ± 0.24	1.57	91.2	² BARATE	00 C	ALEP	
• • • We do not use the follow	wing data for	averages, f	fits, limits, etc. • •	•		
9 ±30	-1.3	20		95м	DLPH	
7 ± 26	-8.3	40	³ ABREU	95M	DLPH	OCCUR=2
-11 ± 33	-24.1	57	³ ABREU	95M	DLPH	OCCUR=3
-62 ± 17	-44.6	69	³ ABREU	95M	DLPH	OCCUR=4
-56 ± 10	-63.5	79	³ ABREU	95M	DLPH	OCCUR=5
-13 \pm 5	-34.4	87.5	³ ABREU	95M	DLPH	OCCUR=6
$-29.0 \ \ ^{+}_{-}\ \ \overset{5.0}{4.8} \ \ \pm 0.5$	-32.1	56.9	⁴ ABE	901	VNS	
$-$ 9.9 \pm 1.5 \pm 0.5	-9.2	35		90	JADE	
0.05 ± 0.22	0.026	91.14	⁵ ABRAMS	89D	MRK2	
-43.4 ± 17.0	-24.9	52.0	⁶ BACALA	89	AMY	
-11.0 ± 16.5	-29.4	55.0	⁶ BACALA	89	AMY	OCCUR=2
-30.0 ± 12.4	-31.2	56.0	⁶ BACALA	89	AMY	OCCUR=3
-46.2 ± 14.9	-33.0	57.0	⁶ BACALA	89	AMY	OCCUR=4
-29 ± 13	-25.9	53.3	ADACHI	88C	TOPZ	
$+$ 5.3 \pm 5.0 \pm 0.5	-1.2	14.0	ADEVA	88	MRKJ	
$-10.4 \pm 1.3 \pm 0.5$	-8.6	34.8	ADEVA	88	MRKJ	OCCUR=2
$-12.3~\pm~5.3~\pm0.5$	-10.7	38.3	ADEVA	88	MRKJ	OCCUR=3
$-15.6~\pm~3.0~\pm0.5$	-14.9	43.8	ADEVA	88	MRKJ	OCCUR=4
$-$ 1.0 \pm 6.0	-1.2	13.9	BRAUNSCH	88D	TASS	

$-~9.1~\pm~2.3~\pm0.5$	-8.6	34.5	BRAUNSCH	88D	TASS	OCCUR=2
$-10.6 \ \ ^{+}_{-} \ \ ^{2.2}_{2.3} \ \ \pm 0.5$	-8.9	35.0	BRAUNSCH	88D	TASS	OCCUR=3
$-17.6 \ \ \begin{array}{c} + \ 4.4 \\ - \ 4.3 \end{array} \ \pm 0.5$	-15.2	43.6	BRAUNSCH	88D	TASS	OCCUR=4
$-$ 4.8 \pm 6.5 \pm 1.0	-11.5	39	BEHREND	87C	CELL	
$-18.8~\pm~4.5~\pm1.0$	-15.5	44	BEHREND	87C	CELL	OCCUR=2
$+ 2.7 \pm 4.9$	-1.2	13.9	BARTEL	86 C	JADE	
$-11.1 \pm 1.8 \pm 1.0$	-8.6	34.4	BARTEL	8 6 C	JADE	OCCUR=2
$-17.3 \pm 4.8 \pm 1.0$	-13.7	41.5	BARTEL	8 6 C	JADE	OCCUR=3
$-22.8 \pm 5.1 \pm 1.0$	-16.6	44.8	BARTEL	86 C	JADE	OCCUR=4
$-$ 6.3 \pm 0.8 \pm 0.2	-6.3	29	ASH	85	MAC	
$-$ 4.9 \pm 1.5 \pm 0.5	-5.9	29	DERRICK	85	HRS	
$-$ 7.1 \pm 1.7	-5.7	29	LEVI	83	MRK2	
-16.1 ± 3.2	-9.2	34.2	BRANDELIK	82C	TASS	

¹ABBIENDI 01A error is almost entirely on account of statistics.

STD

NODE=S044Z0A;LINKAGE=DB NODE=S044Z0A;LINKAGE=LB NODE=S044Z0A;LINKAGE=H

NODE=S044Z0A;LINKAGE=AT NODE=S044Z0A;LINKAGE=AB NODE=S044Z0A;LINKAGE=F

— $A_{FB}^{(0, au)}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~ au^+ au^-$ -

NODE=S044Z0T

NODE=S044Z0T

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}A_{\tau}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

NODE=S044Z0T

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN	NODE-304420
1.88± 0.17 OUR FIT						
1.45 ± 0.30	1.57	91.2	¹ ABBIENDI	01A	OPAL	
2.41 ± 0.37	1.57	91.2	ABREU	00F	DLPH	
2.60 ± 0.47	1.57	91.2	ACCIARRI	00C	L3	
1.70 ± 0.28	1.57	91.2	² BARATE	00C	ALEP	
ullet $ullet$ We do not use the follow	ving data for	averages, fi	ts, limits, etc. • •	•		
$-32.8 \ ^{+}_{-} \ ^{6.4}_{6.2} \ \pm 1.5$	-32.1	56.9	³ ABE	901	VNS	
$-$ 8.1 \pm 2.0 \pm 0.6	-9.2	35	HEGNER	90	JADE	
-18.4 ± 19.2	-24.9	52.0	⁴ BACALA	89	AMY	
-17.7 ± 26.1	-29.4	55.0	⁴ BACALA	89	AMY	OCCUR=2
-45.9 ± 16.6	-31.2	56.0	⁴ BACALA	89	AMY	OCCUR=3
-49.5 ± 18.0	-33.0	57.0	⁴ BACALA	89	AMY	OCCUR=4
-20 ± 14	-25.9	53.3	ADACHI	88C	TOPZ	
$-10.6 \pm 3.1 \pm 1.5$	-8.5	34.7	ADEVA	88	MRKJ	
$-$ 8.5 \pm 6.6 \pm 1.5	-15.4	43.8	ADEVA	88	MRKJ	OCCUR=2
$-$ 6.0 \pm 2.5 \pm 1.0	8.8	34.6	BARTEL	85F	JADE	
$-11.8 \pm 4.6 \pm 1.0$	14.8	43.0	BARTEL	85F	JADE	OCCUR=2
$-$ 5.5 \pm 1.2 \pm 0.5	-0.063	29.0	FERNANDEZ	85	MAC	
$-$ 4.2 \pm 2.0	0.057	29	LEVI	83	MRK2	
-10.3 ± 5.2	-9.2	34.2	BEHREND	82	CELL	
$- 0.4 \pm 6.6$	-9.1	34.2	BRANDELIK	82C	TASS	

 $^{^1}$ ABBIENDI 01A error includes approximately 0.26 due to statistics and 0.14 due to event selection systematics.

NODE=S044Z0T;LINKAGE=DB

NODE=S044Z0T;LINKAGE=LB

NODE=S044Z0T;LINKAGE=AT NODE=S044Z0T;LINKAGE=F

NODE=S044Z0L

For the Z peak, we report the pole asymmetry defined by $(3/4)A_\ell^2$ as determined by the five-parameter fit to cross-section and lepton forward-backward asymmetry data assuming lepton universality. For details see the note "The Z boson" and ref. LEP-SLC 06.

NODE=S044Z0L

 $^{^2\,\}mathrm{BARATE}$ 00C error is almost entirely on account of statistics.

 $^{^3}$ ABREU 95M perform this measurement using radiative muon-pair events associated with high-energy isolated photons.

 $^{^4}$ ABE 901 measurements in the range 50 $\leq \sqrt{s} \leq$ 60.8 GeV.

 $^{^{5} \}rm ABRAMS~89D$ asymmetry includes both 9 $\mu^{+} \, \mu^{-}$ and 15 $\tau^{+} \, \tau^{-}$ events.

⁶ BACALA 89 systematic error is about 5%.

 $^{^2\,\}mathrm{BARATE}$ 00C error includes approximately 0.26 due to statistics and 0.11 due to experimental systematics.

 $^{^3}$ ABE 901 measurements in the range 50 $\,\leq\,\sqrt{s}\,\leq\,$ 60.8 GeV.

⁴BACALA 89 systematic error is about 5%.

ASYMMETRY (%) 1.71±0.10 OUR FIT	STD. MODEL	(GeV)	DOCUMENT ID	<u>TECN</u>				
1.45±0.17	1.57	91.2	¹ ABBIENDI	01A OPAL				
1.87 ± 0.19	1.57	91.2	ABREU	00F DLPH				
1.92 ± 0.24	1.57	91.2	ACCIARRI	00c L3				
1.73 ± 0.16	1.57	91.2	² BARATE	00c ALEP				
1 ABBIENDI 01A error includes approximately 0.15 due to statistics, 0.06 due to event selection systematics, and 0.03 due to the theoretical uncertainty in <i>t</i> -channel prediction. 2 BARATE 00C error includes approximately 0.15 due to statistics, 0.04 due to experimental								
systematics, and 0.02 due	to the thec	retical unce	rtainty in <i>t-</i> channel	prediction.				

NODE=S044Z0L

NODE=S044Z0L:LINKAGE=DB

NODE=S044Z0L;LINKAGE=AC

- $A^{(0,u)}_{FR}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~u\,\overline{u}$ -------

NODE=S044Z0U

NODE=S044Z0U NODE=S044Z0U

NODE=S044Z0S

NODE=S044Z0S

ASYMMETRY (%) $4.0\pm6.7\pm2.8$ 7.2 91.2

NODE=S044Z0U;LINKAGE=A

 $^{
m 1}$ ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

The s-quark asymmetry is derived from measurements of the forward-NODE=S044Z0S backward asymmetry of fast hadrons containing an s quark.

ASYMMETRY (%) DOCUMENT ID TECN 9.8 ± 1.1 OUR AVERAGE $10.08 \pm 1.13 \pm 0.40$ 10.1 ¹ ABREU 00B DLPH ² ACKERSTAFF 97T OPAL $6.8 \pm 3.5 \pm 1.1$ 10.1 91.2

 $^{
m 1}$ ABREU 00B tag the presence of an s quark requiring a high-momentum-identified charged kaon. The s-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected d- and u-quark asymmetries from the Standard Model and using the measured values for the c- and b-quark asymmetries.

 2 ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.

NODE=S044Z0S;LINKAGE=C

NODE=S044Z0S;LINKAGE=B

- $A^{(0,c)}_{FB}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~c\,\overline{c}$ --

OUR FIT, which is obtained by a simultaneous fit to several c- and bquark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the **Z pole** asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

NODE=S044Z0C

NODE=S044Z0C

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN	NODE=S044Z0C
7.07± 0.35 OUR FIT						
$6.31\pm\ 0.93\pm0.65$	6.35	91.26	¹ ABDALLAH	04F	DLPH	OCCUR=2
$5.68 \pm 0.54 \pm 0.39$	6.3	91.25	² ABBIENDI	03P	OPAL	
$6.45 \pm 0.57 \pm 0.37$	6.10	91.21	³ HEISTER	02H	ALEP	
$6.59 \pm \ 0.94 \pm 0.35$	6.2	91.235	⁴ ABREU	99Y	DLPH	
$6.3 \pm 0.9 \pm 0.3$	6.1	91.22	⁵ BARATE	980	ALEP	
$6.3 \pm 1.2 \pm 0.6$	6.1	91.22	⁶ ALEXANDER	97 C	OPAL	OCCUR=2
$8.3 \pm 3.8 \pm 2.7$	6.2	91.24	⁷ ADRIANI	92D	L3	
• • • We do not use the follow	ving data for	averages, fi	ts, limits, etc. • •	•		
$3.1 \pm 3.5 \pm 0.5$	-3.5	89.43	¹ ABDALLAH	04F	DLPH	
$11.0 \pm 2.8 \pm 0.7$	12.3	92.99	¹ ABDALLAH	04F	DLPH	OCCUR=3
$-$ 6.8 \pm 2.5 \pm 0.9	-3.0	89.51	² ABBIENDI	03P	OPAL	OCCUR=2
$14.6 \pm 2.0 \pm 0.8$	12.2	92.95	² ABBIENDI	03 P	OPAL	OCCUR=3
$-12.4 \pm 15.9 \pm 2.0$	-9.6	88.38	³ HEISTER	02H	ALEP	OCCUR=2
$-$ 2.3 \pm 2.6 \pm 0.2	-3.8	89.38	³ HEISTER	02H	ALEP	OCCUR=3
$-$ 0.3 \pm 8.3 \pm 0.6	0.9	90.21	³ HEISTER	02H	ALEP	OCCUR=4
$10.6 \pm 7.7 \pm 0.7$	9.6	92.05	³ HEISTER	02н	ALEP	OCCUR=5
$11.9 \pm 2.1 \pm 0.6$	12.2	92.94	³ HEISTER	02н	ALEP	OCCUR=6

$12.1 \pm 11.0 \pm 1.0$	14.2	93.90	³ HEISTER	02н	ALEP	OCCUR=7
$-4.96\pm3.68\pm0.53$	-3.5	89.434	⁴ ABREU	99Y	DLPH	OCCUR=2
$11.80 \pm \ 3.18 \pm 0.62$	12.3	92.990	⁴ ABREU	99Y	DLPH	OCCUR=3
$-$ 1.0 \pm 4.3 \pm 1.0	-3.9	89.37	⁵ BARATE	980	ALEP	OCCUR=2
$11.0 \pm 3.3 \pm 0.8$	12.3	92.96	⁵ BARATE	980	ALEP	OCCUR=3
$3.9 \pm 5.1 \pm 0.9$	-3.4	89.45	⁶ ALEXANDER	97C	OPAL	
15.8 \pm 4.1 \pm 1.1	12.4	93.00	⁶ ALEXANDER	97C	OPAL	OCCUR=3
$-12.9 \pm 7.8 \pm 5.5$	-13.6	35	BEHREND	90 D	CELL	
$7.7 \pm 13.4 \pm 5.0$	-22.1	43	BEHREND	90 D	CELL	OCCUR=2
$-12.8 \pm 4.4 \pm 4.1$	-13.6	35	ELSEN	90	JADE	
$-10.9 \pm 12.9 \pm 4.6$	-23.2	44	ELSEN	90	JADE	OCCUR=2
-14.9 ± 6.7	-13.3	35	OULD-SAADA	89	JADE	

¹ ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

² ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.

 3 HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

⁴ ABREU 99Y tag $Z \to b\overline{b}$ and $Z \to c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^0 , and D^+ with their charge-conjugate states).

 5 BARATE 980 tag $Z\to c\overline{c}$ events requiring the presence of high-momentum reconstructed $D^{*+},\,D^+,$ or D^0 mesons.

 6 ALEXANDER 97C identify the b and c events using a D/D^* tag.

 $^7\,\mathrm{ADRIANI}$ 92D use both electron and muon semileptonic decays.

NODE=S044Z0C;LINKAGE=HH

NODE=S044Z0C;LINKAGE=AD

NODE=S044Z0C;LINKAGE=AB

,

NODE=S044Z0C;LINKAGE=G

NODE=S044Z0C;LINKAGE=AA

NODE=S044Z0C;LINKAGE=DD NODE=S044Z0C;LINKAGE=A

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the \boldsymbol{Z} **pole** asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

NODE=S044Z0	В
-------------	---

NODE=S044Z0B

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN	NODE=S044Z0B
9.92± 0.16 OUR FIT						
$9.58 \pm \ 0.32 \pm \ 0.14$	9.68	91.231	¹ ABDALLAH	05	DLPH	OCCUR=2
$10.04 \pm \ 0.56 \pm \ 0.25$	9.69	91.26	² ABDALLAH	04F	DLPH	OCCUR=2
$9.72 \pm \ 0.42 \pm \ 0.15$	9.67	91.25	³ ABBIENDI	03 P	OPAL	
$9.77 \pm \ 0.36 \pm \ 0.18$	9.69	91.26	⁴ ABBIENDI	021	OPAL	OCCUR=2
$9.52 \pm \ 0.41 \pm \ 0.17$	9.59	91.21	⁵ HEISTER	02H	ALEP	
$10.00 \pm \ 0.27 \pm \ 0.11$	9.63	91.232	⁶ HEISTER	01 D	ALEP	
$7.62 \pm \ 1.94 \pm \ 0.85$	9.64	91.235	⁷ ABREU	99Y	DLPH	
$9.60\pm \ 0.66\pm \ 0.33$	9.69	91.26	⁸ ACCIARRI	99D	L3	
$9.31 \pm \ 1.01 \pm \ 0.55$	9.65	91.24	⁹ ACCIARRI	98 U	L3	
$9.4 \pm 2.7 \pm 2.2$	9.61	91.22	¹⁰ ALEXANDER	97C	OPAL	OCCUR=2
ullet $ullet$ We do not use the follow	ving data for	averages,	fits, limits, etc. • •	•		
$6.37 \pm \ 1.43 \pm \ 0.17$	5.8	89.449	$^{ m 1}$ ABDALLAH	05	DLPH	
$10.41 \pm \ 1.15 \pm \ 0.24$	12.1	92.990	¹ ABDALLAH	05	DLPH	OCCUR=3
$6.7 \pm 2.2 \pm 0.2$	5.7	89.43	² ABDALLAH	04F	DLPH	
$11.2 \pm 1.8 \pm 0.2$	12.1	92.99	² ABDALLAH	04F	DLPH	OCCUR=3
$4.7 \pm 1.8 \pm 0.1$	5.9	89.51	³ ABBIENDI	03 P	OPAL	OCCUR=2
$10.3 \pm 1.5 \pm 0.2$	12.0	92.95	³ ABBIENDI	03 P	OPAL	OCCUR=3
$5.82 \pm \ 1.53 \pm \ 0.12$	5.9	89.50	⁴ ABBIENDI	021	OPAL	
$12.21 \pm \ 1.23 \pm \ 0.25$	12.0	92.91	⁴ ABBIENDI	021	OPAL	OCCUR=3
$-13.1 \pm 13.5 \pm 1.0$	3.2	88.38	⁵ HEISTER	02H	ALEP	OCCUR=2
$5.5~\pm~1.9~\pm~0.1$	5.6	89.38	⁵ HEISTER	02H	ALEP	OCCUR=3
$-$ 0.4 \pm 6.7 \pm 0.8	7.5	90.21	⁵ HEISTER	02H	ALEP	OCCUR=4
$11.1 \pm 6.4 \pm 0.5$	11.0	92.05	⁵ HEISTER		ALEP	OCCUR=5
$10.4 \pm 1.5 \pm 0.3$	12.0	92.94	⁵ HEISTER	02H	ALEP	OCCUR=6
$13.8 \pm 9.3 \pm 1.1$	12.9	93.90	⁵ HEISTER	02H	ALEP	OCCUR=7
$4.36\pm\ 1.19\pm\ 0.11$	5.8	89.472	⁶ HEISTER	01 D	ALEP	OCCUR=2
$11.72 \pm 0.97 \pm 0.11$	12.0	92.950	⁶ HEISTER		ALEP	OCCUR=3
$5.67 \pm 7.56 \pm 1.17$	5.7	89.434	⁷ ABREU		DLPH	OCCUR=2
$8.82\pm \ 6.33\pm \ 1.22$	12.1	92.990	⁷ ABREU		DLPH	OCCUR=3
$6.11\pm\ 2.93\pm\ 0.43$	5.9	89.50	⁸ ACCIARRI	99 D		OCCUR=2
$13.71\pm\ 2.40\pm\ 0.44$	12.2	93.10	⁸ ACCIARRI	99D	L3	OCCUR=3

$4.95 \pm 5.23 \pm$	± 0.40	5.8		⁹ ACCIARRI	98 U	L3	OCCUR=2
$11.37 \pm 3.99 \pm$	± 0.65	12.1	92.99	⁹ ACCIARRI	98 U	L3	OCCUR=3
$-$ 8.6 ± 10.8 \pm	± 2.9	5.8		⁰ ALEXANDER	97C	OPAL	
$-$ 2.1 \pm 9.0 \pm	± 2.6	12.1	93.00	⁰ ALEXANDER	97C	OPAL	OCCUR=3
-71 ± 34	+ 7 - 8	-58	58.3	SHIMONAKA	91	TOPZ	
$-22.2 \pm 7.7 =$	± 3.5	-26.0	35	BEHREND	90 D	CELL	
-49.1 ± 16.0	± 5.0	-39.7	43	BEHREND	90 D	CELL	OCCUR=2
-28 ± 11		-23	35	BRAUNSCH	90	TASS	
-16.6 ± 7.7 =	± 4.8	-24.3	35	ELSEN	90	JADE	
-33.6 ± 22.2	± 5.2	-39.9	44	ELSEN	90	JADE	OCCUR=2
$3.4 \pm 7.0 =$	± 3.5	-16.0	29.0	BAND	89	MAC	
-72 ± 28 $=$	±13	-56	55.2	SAGAWA	89	AMY	

¹ ABDALLAH 05 obtain an enriched samples of $b\overline{b}$ events using lifetime information. The quark (or antiquark) charge is determined with a neural network using the secondary vertex charge, the jet charge and particle identification.

CHARGE ASYMMETRY IN $e^+e^- \rightarrow q\overline{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $\mathcal{B}^0\text{-}\overline{\mathcal{B}}^0$ mixing and on other electroweak parameters.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		TECN			
• • • We do not use the following data for averages, fits, limits, etc. • •								
$-\ 0.76\!\pm\!0.12\!\pm\!0.15$		91.2	¹ ABREU	921	DLPH			
$4.0 \pm 0.4 \pm 0.63$	4.0	91.3	² ACTON	92L	OPAL			
$9.1 \pm 1.4 \pm 1.6$	9.0	57.9	ADACHI	91	TOPZ			
$-0.84\pm0.15\pm0.04$		91	DECAMP	91 B	ALEP			
$8.3 \pm 2.9 \pm 1.9$	8.7	56.6	STUART	90	AMY			
$11.4 \pm 2.2 \pm 2.1$	8.7	57.6	ABE	89L	VNS			
6.0 ± 1.3	5.0	34.8	GREENSHAW	89	JADE			
8.2 ± 2.9	8.5	43.6	GREENSHAW	89	JADE			

¹ ABREU 921 has 0.14 systematic error due to uncertainty of quark fragmentation.

NODE=S044Z0B;LINKAGE=AL

NODE=S044Z0B;LINKAGE=AD

NODE=S044Z0B;LINKAGE=AB

NODE=S044Z0B;LINKAGE=ZQ

NODE=S044Z0B;LINKAGE=HH

NODE=S044Z0B;LINKAGE=WW

NODE=S044Z0B;LINKAGE=XY

NODE=S044Z0B;LINKAGE=XX

NODE=S044Z0B;LINKAGE=Y

NODE=S044Z0B;LINKAGE=FF

NODE=S044Z0Q

NODE=S044Z0Q

NODE=S044Z0Q

OCCUR=2

NODE=S044Z0Q;LINKAGE=B NODE=S044Z0Q;LINKAGE=C

² ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

³ ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.

⁴ ABBIENDI 021 tag $Z^0 \rightarrow b \bar{b}$ decays using a combination of secondary vertex and lepton tags. The sign of the *b*-quark charge is determined using an inclusive tag based on jet, vertex, and kaon charges.

 $^{^5}$ HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

⁶ HEISTER 01D tag $Z \rightarrow b\overline{b}$ events using the impact parameters of charged tracks complemented with information from displaced vertices, event shape variables, and lepton identification. The b-quark direction and charge is determined using the hemisphere charge method along with information from fast kaon tagging and charge estimators of primary and secondary vertices. The change in the quoted value due to variation of A_{FB}^c and R_b is given as +0.103 ($A_{FB}^c - 0.0651$) -0.440 ($R_b - 0.21585$).

⁷ ABREU 99Y tag $Z \rightarrow b \overline{b}$ and $Z \rightarrow c \overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^{0} , and D^{+} with their charge-conjugate states).

 $^{^8}$ ACCIARRI 99D tag $Z \to b\overline{b}$ events using high p and p_T leptons. The analysis determines simultaneously a mixing parameter $\chi_b=0.1192\pm0.0068\pm0.0051$ which is used to correct the observed asymmetry.

 $^{^9}$ ACCIARRI 98U tag $Z\to b\overline{b}$ events using lifetime and measure the jet charge using the hemisphere charge.

 $^{^{10}}$ ALEXANDER 97C identify the b and c events using a D/D^* tag.

 $^{^2}$ ACTON 92L use the weight function method on 259k selected $Z \to \,$ hadrons events. The systematic error includes a contribution of 0.2 due to $B^0 \mbox{-}\overline{B}{}^0$ mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of $\sin^2\!\theta_W^{\rm eff}$ to be 0.2321 \pm 0.0017 \pm 0.0028.

CHARGE ASYMMETRY IN $p\bar{p} \rightarrow Z \rightarrow e^+e^-$

NODE=S044Z0E

ASYMMETRY (%) $\frac{STD.}{MODEL}$ $\sqrt[5]{\text{GeV}}$ $\frac{DOCUMENT\ ID}{}$ $\frac{TECN}{}$ • • • We do not use the following data for averages, fits, limits, etc. • • • $\frac{1}{}$ 5.2 \pm 5.9 \pm 0.4 91 ABE 91E CDF

NODE=S044Z0E

NODE=S044270 NODE=S044270

NODE=S044ZVG NODE=S044ZVG

NODE=S044ZVG

ANOMALOUS $ZZ\gamma$, $Z\gamma\gamma$, AND ZZV COUPLINGS

A REVIEW GOES HERE – Check our WWW List of Reviews **h**?

Combining the LEP results properly taking into account the correlations the following 95% CL limits are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$\begin{split} &-0.13 < h_1^Z < +0.13, & -0.078 < h_2^Z < +0.071, \\ &-0.20 < h_3^Z < +0.07, & -0.05 < h_4^Z < +0.12, \\ &-0.056 < h_1^\gamma < +0.055, & -0.049 < h_3^\gamma < -0.008, & -0.002 < h_4^\gamma < +0.034. \end{split}$$

VALUE DOCUMENT ID TECN COMMENT

• We do not use the following data for averages, fits, limits, etc. • •

1 AAD
 12BX ATLS

$$E_{\rm cm}^{pp} = 7 \, {\rm TeV}$$

 2 ABAZOV
 12S
 D0
 $E_{\rm cm}^{pp} = 1.96 \, {\rm TeV}$

 3 AALTONEN
 11S
 CDF
 $E_{\rm cm}^{pp} = 1.96 \, {\rm TeV}$

 4 CHATRCHYAN 11M
 CMS
 $E_{\rm cm}^{pp} = 7 \, {\rm TeV}$

 5 ABAZOV
 09L
 D0
 $E_{\rm cm}^{pp} = 1.96 \, {\rm TeV}$

 6 ABAZOV
 07M
 D0
 $E_{\rm cm}^{pp} = 1.96 \, {\rm TeV}$

 7 ABDALLAH
 07C
 DLPH
 $E_{\rm cm}^{ee} = 183-208 \, {\rm GeV}$

 8 ACHARD
 04H
 L3
 $E_{\rm cm}^{ee} = 183-208 \, {\rm GeV}$

 9 ABBIENDI,G
 00C
 OPAL
 $E_{\rm cm}^{ee} = 189 \, {\rm GeV}$

 10 ABBOTT
 98M
 D0
 $E_{\rm cm}^{pp} = 1.8 \, {\rm TeV}$

 11 ABREU
 98K
 DLPH
 $E_{\rm cm}^{ee} = 161, 172 \, {\rm GeV}$

 1 AAD 12BX study $Z\gamma$ production in pp collisions and select 142 $Z\gamma$ candidates where the Z decays to electron or muon pairs, and the photon has a transverse energy larger than 60 GeV. The expected background is 12.9 ± 4.9 events. The resulting 95% C.L. limits ranges are: $-0.028 < h_{\gamma}^3 < 0.027, \, -0.022 < h_{Z}^3 < 0.026, \, -0.00021 < h_{\gamma}^4 < 0.00021, \, -0.00022 < h_{Z}^4 < 0.00021.$

 2 ABAZOV 12S study $Z\gamma$ production in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV using 6.2 fb $^{-1}$ of data where the Z decays to electron (muon) pairs and the photon has at least 10 GeV of transverse momentum. In data, 304 (308) di-electron (di-muon) events are observed with an expected background of 255 \pm 16 (285 \pm 24) events. Based on the photon p_T spectrum, and including also earlier data and the Z \rightarrow $\nu\overline{\nu}$ decay mode (from ABAZOV 09L), the following 95% C.L. limits are reported: $|h_{03}^Z|$ < 0.026, $|h_{04}^Z|$ < 0.0013, $|h_{03}^{\gamma}|$ < 0.027, $|h_{04}^{\gamma}|$ < 0.0014 for a form factor scale of $\Lambda=1.5$ TeV.

3 AALTONEN 11s study $Z\gamma$ events in $p\overline{p}$ interactions at $\sqrt{s}=1.96$ TeV with integrated luminosity 5.1 fb $^{-1}$ for $Z\to e^+e^-/\mu^+\mu^-$ and 4.9 fb $^{-1}$ for $Z\to \nu\overline{\nu}$. For the charged lepton case, the two leptons must be of the same flavor with the transverse momentum/energy of one > 20 GeV and the other > 10 GeV. The isolated photon must have $E_T>50$ GeV. They observe 91 events with 87.2 \pm 7.8 events expected from standard model processes. For the $\nu\overline{\nu}$ case they require solitary photons with $E_T>25$ GeV and missing $E_T>25$ GeV and observe 85 events with standard model expectation of 85.9 \pm 5.6 events. Taking the form factor $\Lambda=1.5$ TeV they derive 95% C.L. limits as $\left|h_{3}^{\gamma}, Z\right|<0.022$ and $\left|h_{4}^{\gamma}, Z\right|<0.0009$.

 4 CHATRCHYAN 11M study $Z\gamma$ production in $p\,p$ collisions at $\sqrt{s}=7$ TeV using $36~{\rm pb}^{-1}$ $p\,p$ data, where the Z decays to $e^+\,e^-$ or $\mu^+\,\mu^-$. The total cross sections are measured for photon transverse energy $E_T^{\gamma}>10$ GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell,\gamma)>0.7$ with the dilepton invariant mass requirement of $M_{\ell\ell}>50$ GeV. The number of $e^+\,e^-\gamma$ and $\mu^+\,\mu^-\gamma$ candidates is 81 and 90 with estimated backgrounds of 20.5 ± 2.5 and 27.3 ± 3.2 events respectively. The 95% CL limits for $ZZ\gamma$ couplings are -0.05< $h_3^Z<0.06$ and -0.0005< $h_4^Z<0.0005$, and for $Z\gamma\gamma$ couplings are -0.07< $h_3^\gamma<0.07$ and -0.0005< $h_4^\gamma<0.0006$.

NODE=S044ZVG;LINKAGE=DA

NODE=S044ZVG;LINKAGE=BA

NODE=S044ZVG;LINKAGE=AL

NODE=S044ZVG;LINKAGE=CH

 5 ABAZOV 09L study $Z\gamma$, $Z o ~
u\overline{
u}$ production in $p\overline{p}$ collisions at 1.96 TeV C.M. energy. They select 51 events with a photon of transverse energy E_T larger than 90 GeV, with an expected background of 17 events. Based on the photon E_T spectrum and including also Z decays to charged leptons (from ABAZOV 07M), the following 95% CL limits are

reported: $|h_{30}^{\gamma}| <$ 0.033, $|h_{40}^{\gamma}| <$ 0.0017, $|h_{30}^{Z}| <$ 0.033, $|h_{40}^{Z}| <$ 0.0017.

 6 ABAZOV 07M use 968 $p\overline{p}\to e^+\,e^-\,/\mu^+\,\mu^-\,\gamma X$ candidates, at 1.96 TeV center of mass energy, to tag $p\overline{p}\to Z\,\gamma$ events by requiring $E_T(\gamma)\!>7$ GeV, lepton-gamma separation $\Delta R_{\ell\gamma}>0.7$, and di-lepton invariant mass >30 GeV. The cross section is in agreement with the SM prediction. Using these $Z\gamma$ events they obtain 95% C.L. limits on each h_i^V , keeping all others fixed at their SM values. They report: $-0.083 < h_{30}^Z < 0.082$, $-0.0053 < h_{40}^Z < 0.0054, \, -0.085 < h_{30}^\gamma < 0.084, \, -0.0053 < h_{40}^\gamma < 0.0054, \, {\rm for \ the}$ form factor scale $\Lambda=1.2$ TeV.

 7 Using data collected at $\sqrt{s}=$ 183–208, ABDALLAH 07C select 1,877 $e^{+}e^{-}
ightarrow~Z\gamma$ events with $Z \to q \overline{q}$ or $\nu \overline{\nu}$, 171 $e^+e^- \to ZZ$ events with $Z \to q \overline{q}$ or lepton pair (except an explicit τ pair), and 74 $e^+e^- \to Z\gamma^*$ events with a $q \overline{q} \mu^+ \mu^-$ or $q \overline{q} e^+e^$ signature, to derive 95% CL limits on h_i^V . Each limit is derived with other parameters set to zero. They report: $-0.23 < h_1^Z < 0.23, \, -0.30 < h_3^Z < 0.16, \, -0.14 < h_1^{\gamma} < 0.16$ $0.14, -0.049 < h_3^{\gamma} < 0.044.$

 8 ACHARD 04H select 3515 ${\rm e^+\,e^-}\to Z\gamma$ events with $Z\to q\,\overline{q}$ or $\nu\overline{\nu}$ at $\sqrt{s}=189$ –209 GeV to derive 95% CL limits on h_i^V . For deriving each limit the other parameters are fixed at zero. They report: $-0.153 < h_1^Z < 0.141, \, -0.087 < h_2^Z < 0.079, \, -0.220 < 0.079, \, -0.0000$ $h_3^Z < 0.112, \, -0.068 < h_4^Z < 0.148, \, -0.057 < h_1^{\gamma} < 0.057, \, -0.050 < h_2^{\gamma} < 0.023,$ $-0.059 < h_3^{\gamma} < 0.004, -0.004 < h_4^{\gamma} < 0.042.$

⁹ ABBIENDI,G 00C study $e^+e^- \rightarrow Z\gamma$ events (with $Z \rightarrow q\overline{q}$ and $Z \rightarrow \nu\overline{\nu}$) at 189 GeV to obtain the central values (and 95% CL limits) of these couplings: $-0.074^{+0.102}_{-0.103}$ (-0.269, 0.119), $h_4^Z = 0.046 \pm 0.068$ (-0.084, 0.175), $h_1^{\gamma} = 0.000 \pm 0.008$ 0.061 (-0.115, 0.115), $h_2^{\gamma} = 0.000 \pm 0.041 \ (-0.077, 0.077), h_3^{\gamma} = -0.080 {+ 0.039 \atop -0.041}$ $(-0.164, -0.006), \ h_4^{\gamma}=0.064^{+0.033}_{-0.030} \ (+0.007, +0.134).$ The results are derived assuming that only one coupling at a time is different from zero. $10 \ \mathsf{ABBOTT} \ \mathsf{98M} \ \mathsf{study} \ p\overline{p} \to \ Z\gamma + \mathsf{X}, \ \mathsf{with} \ Z \to \ e^+e^-, \ \mu^+\mu^-, \ \overline{\nu}\nu \ \mathsf{at} \ 1.8 \ \mathsf{TeV}, \ \mathsf{to} \ \gamma = 0.041$

obtain 95% CL limits at $\Lambda=$ 750 GeV: $|h_{30}^Z|<$ 0.36, $|h_{40}^Z|<$ 0.05 (keeping $h_i^{\gamma}=$ 0), and $|h_{30}^{\gamma}| < 0.37, |h_{40}^{\gamma}| < 0.05$ (keeping $h_i^{\gamma} = 0$). Limits on the *CP*-violating couplings are $|h_{10}^{Z}| < 0.36, |h_{20}^{Z}| < 0.05$ (keeping $h_i^{\gamma} = 0$), and $|h_{10}^{\gamma}| < 0.37, |h_{20}^{\gamma}| < 0.05$ (keeping $h_{20}^{\gamma} = 0$) $h_{:}^{Z}=0$).

 11 ABREU 98K determine a 95% CL upper limit on $\sigma(e^+e^ightarrow~\gamma+$ invisible particles) <2.5 pb using 161 and 172 GeV data. This is used to set 95% CL limits on $\left|h_{30}^{\gamma}\right|<$ 0.8 and $|h_{30}^{Z}| < 1.3$, derived at a scale $\Lambda = 1$ TeV and with n = 3 in the form factor representation.

Combining the LEP results properly taking into account the correlations the following 95% CL limits are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$-0.30 < f_4^Z < +0.30,$$
 $-0.34 < f_5^Z < +0.38,$ $-0.17 < f_4^Y < +0.19,$ $-0.32 < f_5^Y < +0.36.$

f

VALUE

• • • We do not use the following data for averages, fits, limits, etc. • • •

1 AAD
 13Z
 ATLS

$$E_{\rm cm}^{pp} = 7 \, {\rm TeV}$$

 2 CHATRCHYAN 13B
 CMS
 $E_{\rm cm}^{pp} = 7 \, {\rm TeV}$

 3 SCHAEL
 09
 ALEP
 $E_{\rm cm}^{ee} = 192-209 \, {\rm GeV}$

 4 ABAZOV
 08K
 D0
 $E_{\rm cm}^{pp} = 1.96 \, {\rm TeV}$

 5 ABDALLAH
 07C
 DLPH
 $E_{\rm cm}^{ee} = 183-208 \, {\rm GeV}$

 6 ABBIENDI
 04C
 OPAL

 7 ACHARD
 03D
 L3

DOCUMENT ID TECN COMMENT

NODE=S044ZVG;LINKAGE=AZ

NODE=S044ZVG;LINKAGE=AA

NODE=S044ZVG;LINKAGE=AD

NODE=S044ZVG;LINKAGE=AC

NODE=S044ZVG;LINKAGE=D

NODE=S044ZVG;LINKAGE=C

NODE=S044ZVG;LINKAGE=A

NODE=S044ZZZ NODE=S044ZZZ

NODE=S044ZZZ

 1 AAD 13Z study ZZ production in pp collisions at $\sqrt{s}=$ 7 TeV. In the ZZ ightarrow $\ell^+\ell^-\ell'^+\ell'^-$ final state they observe a total of 66 events with an expected background of 0.9 \pm 1.3. In the ZZ $\rightarrow \ell^+\ell^-\nu\nu$ final state they observe a total of 87 events with an expected background of 46.9 $\pm\,5.2.$ The limits on anomalous TGCs are determined using the observed and expected numbers of these ZZ events binned in p_T^Z . The 95% C.L. are as follows: for form factor scale $\Lambda=\infty$, $-0.015 < f_4^{\gamma} < 0.015$, $-0.013 < f_4^{Z} < 0.013$, $-0.016 < f_5^{\gamma} < 0.015$, $-0.013 < f_5^{Z} < 0.013$; for form factor scale $\Lambda=3$ TeV, $-0.022 < f_4^{\gamma} < 0.023$, $-0.019 < f_4^{Z} < 0.019$, $-0.023 < f_5^{\gamma} < 0.023$, -0.023,

² CHATRCHYAN 13B study ZZ production in pp collisions and select 54 ZZ candidates in the Z decay channel with electrons or muons with an expected background of 1.4 \pm 0.5 events. The resulting 95% C.L. ranges are: $-0.013 < f_4^{\gamma} < 0.015, -0.011 < f_4^{Z} < 0.012, -0.014 < f_5^{\gamma} < 0.014, -0.012 < f_5^{Z} < 0.012.$

 3 Using data collected in the center of mass energy range 192–209 GeV, SCHAEL 09 select 318 $e^+e^- o ZZ$ events with 319.4 expected from the standard model. Using this data they derive the following 95% CL limits: $-0.321 < f_{m 4}^{\gamma} < 0.318, \, -0.534 < f_{m 4}^{Z} < 0.534 < f$ $0.534, \, -0.724 < f_5^{\gamma} < 0.733, \, -1.194 < f_5^{Z} < 1.190.$

 4 ABAZOV 08K search for ZZ and $Z\gamma^*$ events with 1 fb $^{-1}$ $p\overline{p}$ data at $\sqrt{s}=$ 1.96 TeV in (ee)(ee), $(\mu\mu)(\mu\mu)$, $(ee)(\mu\mu)$ final states requiring the lepton pair masses to be > 30 GeV. They observe 1 event, which is consistent with an expected signal of 1.71 \pm 0.15 events and a background of 0.13 \pm 0.03 events. From this they derive the following limits, for a form factor (A) value of 1.2 TeV: $-0.28 < f_{40}^Z < 0.28$, $-0.31 < f_{50}^Z < 0.28$ $0.29, -0.26 < f_{40}^{\gamma} < 0.26, -0.30 < f_{50}^{\gamma} < 0.28.$

 5 Using data collected at $\sqrt{s}=183$ –208 GeV, ABDALLAH 07C select 171 $e^+\,e^-\to~ZZ$ events with $Z\to~q\,\overline{q}$ or lepton pair (except an explicit τ pair), and 74 $e^+\,e^-\to~Z\gamma^*$ events with a $q \overline{q} \mu^+ \mu^-$ or $q \overline{q} e^+ e^-$ signature, to derive 95% CL limits on f_i^V . Each limit is derived with other parameters set to zero. They report: $-0.40 < f_{\rm A}^{Z^{'}} < 0.42$, $-0.38 < f_5^Z < 0.62, -0.23 < f_4^{\gamma} < 0.25, -0.52 < f_5^{\gamma} < 0.48.$

 6 ABBIENDI 04C study ZZ production in e^+e^- collisions in the C.M. energy range 190-209 GeV. They select 340 events with an expected background of 180 events. Including the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expected background of 65 events) they report the following 95% CL limits: $-0.45 < f_4^Z < 0.58$,

 $-0.94 <\!\! f_5^Z < 0.25,\, -0.32 <\!\! f_4^\gamma < 0.33,\, {\rm and} \, -0.71 <\!\! f_5^\gamma < 0.59.$ ACHARD 03D study Z-boson pair production in $e^+\,e^-$ collisions in the C.M. energy range 200–209 GeV. They select 549 events with an expected background of 432 events. Including the ACCIARRI 99G and ACCIARRI 990 data (183 and 189 GeV respectively, 286 events with an expected background of 241 events) and the 192-202 GeV ACCIARRI 011 results (656 events, expected background of 512 events), they report the following 95% CL limits: $-0.48 \le f_4^Z \le 0.46$, $-0.36 \le f_5^Z \le 1.03$, $-0.28 \le f_4^{\gamma} \le 0.28$, and $-0.40 \le 0.28$ $f_{5}^{\gamma} \leq 0.47.$

NODE=S044ZZZ;LINKAGE=AA

NODE=S044ZZZ;LINKAGE=CH

NODE=S044ZZZ;LINKAGE=SC

NODE=S044ZZZ;LINKAGE=AB

NODE=S044ZZZ;LINKAGE=AD

NODE=S044ZZZ;LINKAGE=BI

NODE=S044ZZZ;LINKAGE=D3

ANOMALOUS W/Z QUARTIC COUPLINGS

A REVIEW GOES HERE - Check our WWW List of Reviews

 a_0/Λ^2 , a_c/Λ^2

Combining published and unpublished preliminary LEP results the following 95% CL intervals for the QGCs associated with the $ZZ\gamma\gamma$ vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$-0.008 < a_0^Z/\Lambda^2 < +0.021$$
$$-0.029 < a_0^Z/\Lambda^2 < +0.039$$

DOCUMENT ID TECN

• • We do not use the following data for averages, fits, limits, etc.

¹ ABBIENDI 04L OPAL ² HEISTER 04A ALEP

³ ACHARD 02G L3 NODE=S044275 NODE=S044275

NODE=S044AQC NODE=S044AQC

NODE=S044AQC

 1 ABBIENDI 04L select 20 $e^{+}\,e^{-}\rightarrow\nu\overline{\nu}\gamma\gamma$ acoplanar events in the energy range 180–209 GeV and 176 $e^{+}\,e^{-}\rightarrow q\overline{q}\gamma\gamma$ events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous $W^{+}\,W^{-}\gamma\gamma$ and $ZZ\gamma\gamma$ quartic couplings. Further combining with the $W^{+}\,W^{-}\gamma$ sample of ABBIENDI 04B the following one–parameter 95% CL limits are obtained: $-0.007 < a_{0}^{Z}/\Lambda^{2} < 0.023~{\rm GeV^{-2}}, -0.029 < a_{0}^{Z}/\Lambda^{2} < 0.020~{\rm GeV^{-2}}, -0.052 < a_{c}^{W}/\Lambda^{2} < 0.037~{\rm GeV^{-2}}$

 $0.037~{\rm GeV}^{-2}.$ 2 In the CM energy range 183 to 209 GeV HEISTER 04A select 30 $e^+e^- \to \nu \overline{\nu} \gamma \gamma$ events with two acoplanar, high energy and high transverse momentum photons. The photon-photon acoplanarity is required to be $>5^\circ$, $E_\gamma/\sqrt{s}>0.025$ (the more energetic photon having energy $>0.2~\sqrt{s}$), ${\rm p_T}_\gamma/{\rm E_{beam}}>0.05$ and $\left|\cos\theta_\gamma\right|<0.94$. A likelihood fit to the photon energy and recoil missing mass yields the following one–parameter 95% CL limits: $-0.012< a_0^Z/\Lambda^2<0.019~{\rm GeV}^{-2}, -0.041< a_c^Z/\Lambda^2<0.044~{\rm GeV}^{-2}, -0.060< a_0^W/\Lambda^2<0.055~{\rm GeV}^{-2}, -0.099< a_c^W/\Lambda^2<0.093~{\rm GeV}^{-2}.$ 3 ACHARD 02G study $e^+e^-\to Z\gamma\gamma\to q\overline{q}\gamma\gamma$ events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy

³ ACHARD 02G study $e^+e^- \to Z\gamma\gamma \to q\overline{q}\gamma\gamma$ events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy >5 GeV and $|\cos\theta| < 0.97$, and the di-jet invariant mass to be compatible with that of the Z boson (74–111 GeV). Cuts on Z velocity ($\beta < 0.73$) and on the energy of the most energetic photon reduce the backgrounds due to non-resonant production of the $q\overline{q}\gamma\gamma$ state and due to ISR respectively, yielding a total of 40 candidate events of which 8.6 are expected to be due to background. The energy spectra of the least energetic photon are fitted for all ten center-of-mass energy values from 130 GeV to 209 GeV (as obtained adding to the present analysis 130–202 GeV data of ACCIARRI 01E, for a total of 137 events with an expected background of 34.1 events) to obtain the fitted values $a_0/\Lambda^2 = 0.00^+_{-0.01}$ GeV⁻² and $a_c/\Lambda^2 = 0.03^+_{-0.02}$ GeV⁻², where the other parameter is kept fixed to its Standard Model value (0). A simultaneous fit to both parameters yields the 95% CL limits -0.02 GeV⁻² $< a_0/\Lambda^2 < 0.03$ GeV⁻² and -0.07 GeV⁻² $< a_c/\Lambda^2 < 0.05$ GeV⁻².

NODE=S044AQC;LINKAGE=AB

NODE=S044AQC;LINKAGE=HE

NODE=S044AQC;LINKAGE=C

Z REFERENCES

JHEP 1303 128 (ATLAS Collab.) G. Aad et al. CHATRCHYAN 13B JHEP 1301 063 Chatrchyan et al. (CMS Colalb. (ATLAS Collab. AAD 12BX PL B717 49 G. Aad et al. ABAZOV PR D85 052001 V.M. Abazov et al. 125 (D0 Collab. CHATRCHYAN 12BN JHEP 1212 034 (CMS Collab.) S. Chatrchvan et al. AALTONEN PRL 107 051802 T. Aaltonen et al. (CDF Collab. (D0 Collab. (CMS Collab. ABAZOV 11D PR D84 012007 V.M. Abazov et al. CHATRCHYAN S. Chatrchyan *et al.* V.M. Abazov *et al.* 11M PL B701 535 PRL 102 201802 (D0 Collab. ABAZOV 09L (UGAZ) (UGAZ) (ALEPH Collab.) (D0 Collab.) (D0 Collab.) A. Beddall, A. Beddall, A. Bingul BEDDALL PL B670 300 IHFP 0904 124 SCHAFL 09 S. Schael et al. ABAZOV PRL 100 131801 V.M. Abazov et al. 08K ABAZOV PL B653 378 V.M. Abazov et al. EPJ C51 525 PL B639 179 J. Abdallah et al. J. Abdallah et al. (DELPHI Collab. (DELPHI Collab. ABDALLAH 07C ABDALLAH 06E 06 PL B632 35 Aktas et al. (H1 Collab.) A. Aktas et al. ALEPH, DELPHI, L3, OPAL, SLD and working groups S. Schael et al. (ALEPH Collab. LEP-SLC 06 PRPI 427 257 PL B639 192 SCHAEL 06A ABDALLAH EPJ C40 1 J. Abdallah et al. (DELPHI Collab. 05 ABDALLAH EPJ C44 299 J. Abdallah et al. (DELPHI Collab (SLD Collab. (SLD Collab. PRI 94 091801 K. Abe et al. K. Abe et al. ARF 05 05F PR D71 112004 ABE ACOSTA PR D71 052002 Acosta et al. CDF Collab ABBIENDI 04B PL B580 17 Abbiendi et al. (ÒPAL Collab. (OPAL Collab. (OPAL Collab. (OPAL Collab. EPJ C32 303 ABBIENDI 04C Abbiendi et al. ABBIENDI 04E PL B586 167 Abbiendi et al. ABBIENDI 04G EPJ C33 173 Abbiendi et al. OPAL Collab ARRIFNDI 041 PR D70 032005 Abbiendi et al. (OPAL Collab. (DELPHI Collab. ABDALLAH EPJ C34 109 Abdallah et al. 04F PR D69 072003 Abe et al. (SLD Collab. ACHARD PL B585 42 PL B597 119 (L3 Collab. (L3 Collab. 04CAchard et al. ACHARD 04H Achard et al. (ALEPH Collab. PL B602 31 Heister et al. (OPAL Collab. (DELPHI Collab. (DELPHI Collab. ABBIENDI 03P PL B577 18 Abbiendi et al. ABDALLAH 03H PL B569 129 Abdallah et al **ABDALLAH** PL B576 29 J. Abdallah et al. PRL 90 141804 Abe et al. (SLD Collab ACHARD 03D PL B572 133 Achard et al. (L3 Collab. (L3 Collab. Achard et al. ACHARD PL B577 109 03G ABBIENDI PL B546 29 Abbiendi et al. (OPAL Collab (SLD Collab. (L3 Collab. Abe et al. Achard et al. ABE 02G PRL 88 151801 ACHARD PL B540 43 02G (ALEPH Collab **HEISTER** Heister et al. HEISTER 02C PL B528 19 A. Heister et al. ALEPH Collab (ALEPH Collab. EPJ C24 177 EPJ C19 587 A. Heister et al. G. Abbiendi et al. HFISTER 02H **ABBIENDI** (OPAL Collab 01A ABBIENDI EPJ C18 447 Abbiendi et al. OPAL Collab. ABBIENDI 01K PL B516 1 EPJ C20 445 Abbiendi et al (OPAL Collab. (OPAL Collab. Abbiendi et al. ABBIENDI 01N G. EPJ C21 1 ABBIENDI Abbiendi et al. (OPAL Collab. (SLD Collab. ARF 01B PRL 86 1162 Abe et al. (SLD Collab. (L3 Collab. PR D63 032005 Abe et al. ABE 01C **ACCIARRI** PL B505 47 M. Acciarri et al. 01E PL B497 23 Acciarri et al. (L3 Collab **ACCIARRI** (ALEPH Collab.) HFISTER EPJ C20 401 A. Heister et al.

NODE=S044 REFID=54966 REFID=54820 REFID=54585 REFID=54348 REFID=54348 REFID=54777 REFID=16457 REFID=16645 REFID=52865 REFID=52611 REFID=52779 REFID=52389 REFID=51928 REFID=51839 REFID=51265 REFID=51010 REFID=51219;ERROR=1;ERROR=2 REFID=51266 REFID=50321 REFID=51221 REFID=50449 REFID=50666 REFID=50721 REFID=49616 REFID=49627 REFID=49886 REFID=49915 REFID=50050 REFID=49918 REFID=49963 REFID=49832 REFID=50107 REFID=50282 REFID=49606 REFID=49548 REFID=49645 REFID=49393 REFID=49556 REFID=49808 REFID=48991 REFID=48627 REFID=48778 REFID=48562 REFID=48564 REFID=48626 REFID=48022 REFID=48078 REFID=48283 REFID=48296 REFID=48364 REFID=48042 REFID=48051 REFID=48127 REFID=47915

RFFID=48196

HEISTER ABBIENDI ABBIENDI,G ABE ABREU ABREU ABREU ABREU ACCIARRI ACCIARRI ACCIARRI BARATE BARATE BARATE BARATE BARATE ABBIENDI ABBE ABE ABREU ACCIARRI	01D 00N 00C 00B 00D 00D 00D 00C 00D 00C 00O 00C 00O 99B 99L 99P 99P 99P 99P 99P 99P 99P 99B 98B 98B 98B 98B 98B	EPJ C22 201 PL B476 256 EPJ C17 553 PRL 84 5945 PRL 85 5059 EPJ C12 225 EPJ C14 613 EPJ C14 585 EPJ C16 371 PL B475 429 EPJ C13 47 EPJ C16 1 PL B479 79 PL B489 93 EPJ C16 613 EPJ C16 597 EPJ C16 1 PL B479 79 PL B489 93 EPJ C16 597 EPJ C16 1 EPJ C16 613 EPJ C16 597 EPJ C10 415 EPJ C10 415 PL B447 157 PR D59 052001 PRL 83 1902 EPJ C6 19 EPJ C10 219 PL B448 152 PL B450 364 PL B462 425 EPJ C10 219 PL B448 152 PL B450 363 PR D57 R3817 PRL 80 660 PRL 81 942 PL B423 194 EPJ C5 585 PL B431 194 EPJ C6 411 EPJ C1 439 PL B420 157	G.G.K.K. P. P. P. P. M.M. M. M.R. R. R. G.G.K.K. P. P. P. P. P. M. M. M. B. K.K. P. P. M. M. M. K.K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. K.K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. K.K. P. P. M. M. M. K.K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. K. K. P. P. M. M. M. M. B. K.K. P. P. M. M. M. M. M. B. K.K. P. P. M. M. M. M. M. B. K.K. P. P. M. M. M. M. M. M. B. K.K. P. P. M. M. M. M. M. M. M. B. K.K. P. P. M.	Heister et al. Abbiendi et al. Abbiendi et al. Abbiendi et al. Abe et al. Abreu et al. Acciarri et al. Acciarri et al. Acciarri et al. Barate et al. Barate et al. Barate et al. Abbiendi et al. Abbiendi et al. Abbiendi et al. Abreu et al. Aboreu et al. Abbreu et al. Abbreu et al. Abreu et al. Abreu et al. Abreu et al. Abreu et al. Acciarri et al.	(OPAL (SLD (SLD (SLD (SLD (SLD (SLD (SLD (SL	Collab.)	REFID=47602 REFID=477651 REFID=477651 REFID=477870 REFID=477374 REFID=477375 REFID=477481 REFID=477481 REFID=477482 REFID=477483 REFID=477483 REFID=477586 REFID=477586 REFID=477766 REFID=47777 REFID=47776 REFID=47776 REFID=46595 REFID=46594 REFID=46594 REFID=46594 REFID=47225 REFID=47146 REFID=47225 REFID=47248 REFID=47830 REFID=47800
	98E	EPJ C1 439	K. K.	Ackerstaff et al.	(OPAL (OPAL		REFID=45837
BARATE BARATE BARATE ABE	98O 98T 98V 97	PL B434 415 EPJ C4 557 EPJ C5 205 PRL 78 17	R. R. R.	Barate et al. Barate et al. Barate et al. Abe et al.	(ÀLEPH (ALEPH (ALEPH	Collab.)	REFID=46133 REFID=46149 REFID=46151 REFID=45226
ABREU ABREU ABREU ACCIARRI	97C 97E 97G 97D	ZPHY C73 243 PL B398 207 PL B404 194 PL B393 465	P. P. P.	Abreu et al. Abreu et al. Abreu et al. Acciarri et al.	(DEĽPHI (DELPHI (DELPHI	Collab.)	REFID=45288 REFID=45322 REFID=45454 REFID=45253
ACCIARRI ACCIARRI ACCIARRI ACKERSTAFF	97J 97L 97R 97M	PL B407 351 PL B407 389 PL B413 167 ZPHY C74 413	M. M.	Acciarri et al. Acciarri et al. Acciarri et al. Ackerstaff et al.	(L3 (L3	Collab.) Collab.) Collab.) Collab.)	REFID=45632 REFID=45655 REFID=45748 REFID=45487
ACKERSTAFF ACKERSTAFF ACKERSTAFF ALEXANDER	97T 97W 97C	PL B412 210 ZPHY C76 387 ZPHY C76 425 ZPHY C73 379	K. K. G.	Ackerstaff et al. Ackerstaff et al. Ackerstaff et al. Alexander et al.	(OPAL (OPAL (OPAL	Collab.) Collab.) Collab.)	REFID=45739 REFID=45785 REFID=45788 REFID=45289 REFID=45292
ALEXANDER ALEXANDER BARATE BARATE BARATE	97D 97E 97D 97E 97F	ZPHY C73 569 ZPHY C73 587 PL B405 191 PL B401 150 PL B401 163	G. R. R.	Alexander et al. Alexander et al. Barate et al. Barate et al. Barate et al.		Collab.)	REFID=45293 REFID=45457 REFID=45473 REFID=45474
BARATE BARATE ABREU ABREU	97H 97J 96R 96S	PL B402 213 ZPHY C74 451 ZPHY C72 31 PL B389 405	R. R. P.	Barate et al. Barate et al. Abreu et al. Abreu et al.	(ALEPH (ALEPH (ALEPH (DELPHI (DELPHI	Collab.) Collab.)	REFID=45480 REFID=45490 REFID=44935 REFID=44969
ABREU ACCIARRI ADAM ADAM	96U 96 96 96B	ZPHY C73 61 PL B371 126 ZPHY C69 561 ZPHY C70 371	M. W.	Abreu <i>et al.</i> Acciarri <i>et al.</i> Adam <i>et al.</i> Adam <i>et al.</i>	(DELPHI	Collab.) Collab.)	REFID=45285 REFID=44637 REFID=44627 REFID=44629
ALEXANDER ALEXANDER ALEXANDER ALEXANDER	96B 96F 96N 96R	ZPHY C70 197 PL B370 185 PL B384 343 ZPHY C72 1	G. G. G.	Alexander et al. Alexander et al. Alexander et al. Alexander et al.	(OPAL (OPAL (OPAL	Collab.) Collab.) Collab.)	REFID=44638 REFID=44670 REFID=44901 REFID=44933
BUSKULIC BUSKULIC BUSKULIC BUSKULIC ABE	96D 96H 96T 96Y 95J	ZPHY C69 393 ZPHY C69 379 PL B384 449 PL B388 648 PRL 74 2880	D. D. D.	Buskulic et al. Buskulic et al. Buskulic et al. Buskulic et al. Abe et al.	(ALEPH (ALEPH (ALEPH (ALEPH (SLD	Collab.)	REFID=44677 REFID=44703 REFID=44907 REFID=44963 REFID=44191
ABREU ABREU ABREU ABREU	95 95D 95L 95M	ZPHY C65 709 (ZPHY C66 323 ZPHY C65 587 ZPHY C65 603	erratum)P. P. P.		(DELPHI (DELPHI (DELPHI (DELPHI (DELPHI	Collab.) Collab.)	REFID=44104 REFID=44261 REFID=44390 REFID=44398
ABREU ABREU ABREU ABREU	95O 95R 95V 95W	ZPHY C67 543 ZPHY C68 353 ZPHY C68 541 PL B361 207	P. P. P.	Abreu et al. Abreu et al. Abreu et al. Abreu et al.	(DELPHI (DELPHI (DELPHI (DELPHI	Collab.) Collab.)	REFID=44457 REFID=44464 REFID=44538 REFID=44542
ABREU ACCIARRI ACCIARRI ACCIARRI AKERS	95X 95B 95C 95G 95C	ZPHY C69 1 PL B345 589 PL B345 609 PL B353 136 ZPHY C65 47	M. M. M.	Abreu et al. Acciarri et al. Acciarri et al. Acciarri et al. Akers et al.	(L3 (L3	Collab.) Collab.) Collab.) Collab.) Collab.)	REFID=44685 REFID=44130 REFID=44132 REFID=44281 REFID=44157

AKERS AKERS AKERS AKERS AKERS ALEXANDER BUSKULIC MIYABAYASHI ABE ABREU ABREU AKERS BUSKULIC BUSKULIC VILAIN ABREU ABREU ABREU ABREU AISO	95X 95Z 95D 95R 95 94C 94B 94P 94P 94G 94J 94	ZPHY C67 389 ZPHY C68 1 ZPHY C68 1 ZPHY C68 203 PL B358 162 ZPHY C69 15 PL B347 171 PRL 73 25 PL B327 386 PL B341 109 ZPHY C62 179 ZPHY C62 1 PL B320 203 PL B298 236 ZPHY C59 533 ZPHY C65 709 (eri	R. Akers et al. R. Akers et al. R. Akers et al. R. Akers et al. G. Alexander et al. D. Buskulic et al. K. Miyabayashi et al. K. Abe et al. P. Abreu et al. R. Akers et al. D. Buskulic et al. D. Buskulic et al. P. Vilain et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. P. Vilain et al. P. Abreu et al. P. Abreu et al. P. Abreu et al. P. Abreu et al.	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (TOPAZ Collab.) (SLD Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CHARM II Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)	REFID=44380 REFID=44458 REFID=44459 REFID=44469 REFID=44472 REFID=444209 REFID=43754 REFID=43754 REFID=44067 REFID=44059 REFID=43911 REFID=43822 REFID=43824 REFID=43506 REFID=43506
ABREU		PL B318 249	P. Abreu et al.	(DELPHI Collab.)	REFID=43632
ACTON		PL B305 407	P.D. Acton et al.	(OPAL Collab.)	REFID=43341
ACTON		ZPHY C58 219	P.D. Acton et al.	(OPAL Collab.)	REFID=43378
ACTON		PL B311 391	P.D. Acton et al.	(OPAL Collab.)	REFID=43438
ADRIANI		PL B301 136	O. Adriani et al.	(L3 Collab.)	REFID=43235
ADRIANI	93I	PL B316 427	O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i> V.A. Novikov, L.B. Oku P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(L3 Collab.)	REFID=43540
BUSKULIC	93L	PL B313 520		(ALEPH Collab.)	REFID=43524
NOVIKOV	93C	PL B298 453		in, M.I. Vysotsky (ITEP)	REFID=44105
ABREU	92I	PL B277 371		(DELPHI Collab.)	REFID=41986
ABREU	92M	PL B289 199		(DELPHI Collab.)	REFID=42151
ACTON	92B	ZPHY C53 539	D.P. Acton <i>et al.</i> P.D. Acton <i>et al.</i> P.D. Acton <i>et al.</i> B. Adeva <i>et al.</i> O. Adriani <i>et al.</i>	(OPAL Collab.)	REFID=41956
ACTON	92L	PL B294 436		(OPAL Collab.)	REFID=43129
ACTON	92N	PL B295 357		(OPAL Collab.)	REFID=43139
ADEVA	92	PL B275 209		(L3 Collab.)	REFID=41885
ADRIANI	92D	PL B292 454		(L3 Collab.)	REFID=42220
ALITTI BUSKULIC BUSKULIC DECAMP ABE		PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502	J. Alitti <i>et al.</i> D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i> D. Decamp <i>et al.</i> F. Abe <i>et al.</i>	(UA2 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.)	REFID=41821 REFID=42210 REFID=42241 REFID=41877 REFID=41709
ABREU ACTON ADACHI ADEVA AKRAWY	91H	ZPHY C50 185 PL B273 338 PL B255 613 PL B259 199 PL B257 531	P. Abreu et al. D.P. Acton et al. I. Adachi et al. B. Adeva et al. M.Z. Akrawy et al.	(DELPHI Collab.) (OPAL Collab.) (TOPAZ Collab.) (L3 Collab.) (OPAL Collab.)	REFID=44682 REFID=41878 REFID=41667 REFID=44683 REFID=41638
DECAMP DECAMP JACOBSEN SHIMONAKA	91B 91J 91 91 90I	PL B259 377 PL B266 218 PRL 67 3347 PL B268 457 ZPHY C48 13	D. Decamp et al. D. Decamp et al. R.G. Jacobsen et al. A. Shimonaka et al. K. Abe et al.	(ALEPH Collab.) (ALEPH Collab.) (Mark II Collab.) (TOPAZ Collab.) (VENUS Collab.)	REFID=41488 REFID=41614 REFID=41841 REFID=41791 REFID=41507
ABE ABRAMS AKRAWY BEHREND BRAUNSCH	90	PRL 64 1334	G.S. Abrams et al.	(Mark II Collab.)	REFID=44684
	90J	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.)	REFID=41336
	90D	ZPHY C47 333	H.J. Behrend et al.	(CELLO Collab.)	REFID=41735
	90	ZPHY C48 433	W. Braunschweig et al.	(TASSO Collab.)	REFID=41736
ELSEN	90	ZPHY C46 349	E. Elsen <i>et al.</i> S. Hegner <i>et al.</i> D. Stuart <i>et al.</i> F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(JADE Collab.)	REFID=41049
HEGNER	90	ZPHY C46 547		(JADE Collab.)	REFID=41734
STUART	90	PRL 64 983		(AMY Collab.)	REFID=41898
ABE	89	PRL 62 613		(CDF Collab.)	REFID=40629
ABE	89C	PRL 63 720		(CDF Collab.)	REFID=40793
ABE ABRAMS ABRAMS ALBAJAR BACALA BAND		PL B232 425 PRL 63 2173 PRL 63 2780 ZPHY C44 15 PL B218 112 PL B218 369	K. Abe <i>et al.</i> G.S. Abrams <i>et al.</i> G.S. Abrams <i>et al.</i> C. Albajar <i>et al.</i> A. Bacala <i>et al.</i> H.R. Band <i>et al.</i>	(VENUS Collab.) (Mark II Collab.) (Mark II Collab.) (UA1 Collab.) (AMY Collab.) (MAC Collab.)	REFID=41058 REFID=40962 REFID=40989 REFID=40805 REFID=40805 REFID=40807
GREENSHAW OULD-SAADA SAGAWA ADACHI ADEVA BRAUNSCH	89 89 88 88C 88 88D	ZPHY C42 1 ZPHY C44 567 PRL 63 2341 PL B208 319 PR D38 2665 ZPHY C40 163	T. Greenshaw <i>et al.</i> F. Ould-Saada <i>et al.</i> H. Sagawa <i>et al.</i> I. Adachi <i>et al.</i> B. Adeva <i>et al.</i> W. Braunschweig <i>et al.</i>	(JADE Collab.) (JADE Collab.) (AMY Collab.) (TOPAZ Collab.) (Mark-J Collab.) (TASSO Collab.)	REFID=40853 REFID=40965 REFID=40979 REFID=40686 REFID=40686 REFID=40697
ANSARI BEHREND BARTEL Also Also	87 87C 86C	PL B186 440 PL B191 209 ZPHY C30 371 ZPHY C26 507 PL 108B 140	R. Ansari et al. H.J. Behrend et al. W. Bartel et al. W. Bartel et al. W. Bartel et al.	(UA2 Collab.) (UA2 Collab.) (CELLO Collab.) (JADE Collab.) (JADE Collab.) (JADE Collab.)	REFID=40199 REFID=40199 REFID=40179 REFID=10047 REFID=10033
ASH	85	PRL 55 1831	W.W. Ash <i>et al.</i>	`(MAC Collab.)	REFID=10046
BARTEL	85F	PL 161B 188	W. Bartel <i>et al.</i>	(JADE Collab.)	REFID=10342
DERRICK	85	PR D31 2352	M. Derrick <i>et al.</i>	(HRS Collab.)	REFID=10049
FERNANDEZ	85	PRL 54 1624	E. Fernandez <i>et al.</i>	(MAC Collab.)	REFID=10347
LEVI	83	PRL 51 1941	M.E. Levi <i>et al.</i>	(Mark II Collab.)	REFID=41536
BEHREND	82	PL 114B 282	H.J. Behrend <i>et al.</i>	(CELLO Collab.)	REFID=10324
BRANDELIK	82C	PL 110B 173	R. Brandelik <i>et al.</i>	(TASSO Collab.)	REFID=41537